TO VIEW PROPERLY YOU MAY NEED TO SET YOUR BROWSER'S CHARACTER ENCODING TO UNICODE 8 OR 16 AND USE YOUR BACK BUTTON TO RE-LOAD A. CRUISE REPORT: SR03 (Last Update FEB 2009) A.1. HIGHLIGHTS CRUISE SUMMARY INFORMATION Section designation SR03 Expedition designation (EXPOCODE) 09AR20070117 Chief Scientist & affiliation MARK ROSENBERG/ACE CRC* Dates 2007 JAN 17 - 2007 FEB 20 Ship AURORA AUSTRALIS Ports of call Hobart, Tasmania, Australia to Hobart, Tasmania, Australia Number of stations 109 43°39.42'S Geographic boundaries of the stations 148°.70'E 153°42.17'E 54°27.64'S Floats and drifters deployed 0 Floats, 0 Drifters Moorings deployed or recovered 0 Deployed, 0 recovered *Mark Rosenberg • Antarctic Climate & Ecosystems Cooperative Research Centre, c/ University of Tasmania Private Bag 80 Hobart, Tasmania, 7001 • AUSTRALIA Tel: +61-3-6226-7651 • Fax: +61-3-6226-2973 • Email: Mark.Rosenberg@utas.edu.au SAZ-SENSE, Marine Science Cruise AU0703 - Oceanographic Field Measurements and Analysis MARK ROSENBERG ACE CRC, Hobart, Australia September, 2007 1. INTRODUCTION Oceanographic measurements were collected aboard Aurora Australis cruise au0703 (voyage 3 2006/2007, 17th January to 20th February 2007) as part of the "SAZ-SENSE" experiment south of Tasmania, between 43° and 55° south. A total of 109 CTD vertical profile stations were taken to various depths, focusing chiefly on the upper water column. Over 1300 Niskin bottle water samples were collected for the measurement of salinity, dissolved oxygen, nutrients (phosphate, nitrate+nitrite, silicate, ammonia and nitrite), dissolved inorganic carbon, alkalinity, particulate organic carbon/nitrogen/silicate, dissolved and particulate barium, thorium, dissolved organic carbon, ammonium, pigments, phytoplankton, bacteria, viruses, diatoms, amino acids, and other biological parameters (list incomplete), using a 24 bottle rosette sampler. Near surface current profile data were collected by a ship mounted ADCP. Data from the array of ship's underway sensors are included in the data set. This report describes the processing/calibration of the CTD and ADCP data, and details the data quality. An offset correction is derived for the underway sea surface temperature and salinity data, by comparison with near surface CTD data. CTD station positions are shown in Figure 1, while CTD station information is summarized in Table 1. During the cruise, various sites were occupied for multiple measurement activities, and these sites were named and referred to as "stations". Note however that in this report "station" refers to a single CTD cast i.e. CTD station 1 to 109 for the cruise. 2. CTD INSTRUMENTATION SeaBird SBE9plus CTD serial 704, with dual temperature and conductivity sensors and a single SBE43 dissolved oxygen sensor (serial 0178, on the primary sensor pump line), was used for the entire cruise, mounted on a SeaBird 24 bottle rosette frame, together with a SBE32 24 position pylon and 24 x 10 litre General Oceanics Niskin bottles. The following additional sensors were mounted: • Tritech 200 kHz and 500 kHz altimeters • Wetlabs ECO-AFL/FL fluorometer serial 296 • Wetlabs C-star transmissometer serial 899DR • Biospherical Instruments photosynthetically active radiation (i.e. PAR) sensor • old Antarctic Division PAR sensor CTD data were transmitted up a 6 mm seacable to a SBE11plusV2 deck unit, at a rate of 24 Hz, and data were logged simultaneously on 2 PC's using SeaBird data acquisition software "Seasave". The transmissometer was plumbed inline with the main CTD sensors for the first 35 casts, with a closed tube joining the 2 transmissometer windows. The tube and plumbing to the transmissometer were removed after CTD 35. The CTD deployment method was as follows: • CTD initially deployed down to ~20 m • after confirmation of pump operation, CTD returned up to just below the surface (depth dependent on sea state) • after returning to just below the surface, downcast proper commenced Cast depths varied according to the sampling requirements at each station, and full depth casts were only taken on 3 occasions. Pre cruise temperature, conductivity and pressure calibrations were performed by the CSIRO Division of Marine and Atmospheric Research calibration facility (Table 2) (July to August 2006). Manufacturer supplied calibrations were used for the dissolved oxygen, fluorometer, transmissometer and altimeters. PAR sensors were uncalibrated (raw voltage data only). Final conductivity and dissolved oxygen calibrations derived from in situ Niskin bottle samples are listed later in the report. For stations 49, 50 and 51, six seal tags (P.I. Judy Horsburgh) were attached to the rosette, to calibrate and check functioning of the tag sensors. 3. CTD DATA PROCESSING AND CALIBRATION CTD data were processed in Hobart. The first step is application of a suite of the SeaBird "Seasoft" processing programs to the raw data, in order to: • convert raw data signals to engineering units • remove the surface pressure offset for each station • realign the oxygen sensor with respect to time (note that conductivity sensor alignment is done by the deck unit at the time of data logging) • remove conductivity cell thermal mass effects • apply a low pass filter to the pressure data • flag pressure reversals • search for bad data (e.g. due to sensor fouling) Further processing and data calibration were done in a UNIX environment, using a suite of Fortran programs. Processing steps here include: • forming upcast burst CTD data for calibration against bottle data, where each upcast burst is the average of 10 seconds of data prior to each Niskin bottle firing • merging bottle and CTD data, and deriving CTD conductivity calibration coefficients by comparing upcast CTD burst average conductivity data with calculated equivalent bottle sample conductivities • forming pressure monotonically increasing data, and from there calculating 2 dbar averaged downcast CTD data • calculating calibrated 2 dbar averaged salinity from the 2 dbar pressure, temperature and conductivity values • deriving CTD dissolved oxygen calibration coefficients by comparing bottle sample dissolved oxygen values (collected on the upcast) with CTD dissolved oxygen values from the equivalent 2 dbar downcast pressures • extracting the appropriate fluorescence and transmittance data to assign to each 2 dbar bin Full details of the data calibration and processing methods are given in Rosenberg et al. (in preparation), referred to hereafter as the CTD methodology. Additional processing steps, in particular for the fluorescence and transmittance data, are discussed below in the results section. For calibration of the CTD oxygen data, whole profile fits were used for each station. Final station header information, including station positions at the start, bottom and end of each CTD cast, were obtained from underway data for the cruise (see section 6 below). Note the following for the station header information: • All times are UTC. • "Start of cast" information is at the commencement of the downcast proper, as described above. • "Bottom of cast" information is at the maximum pressure value. • "End of cast" information is when the CTD leaves the water at the end of the cast, as indicated by a drop in salinity values. • 12 kHz depth sounder data were not processed for this cruise, and all bottom depth information are the values recorded at the time of CTD logging i.e. as read from the "Echogram" display, with sound speed 1500 m/s. The Echogram display was often difficult to read through the thruster noise, and bottom depth values are mostly approximate only. • "Bottom of cast" depths for CTD 38 and 43 are calculated from CTD maximum pressure and altimeter value at the bottom of the casts. Lastly, data were converted to MATLAB format, and final data quality checking was done within MATLAB. 4. CTD AND BOTTLE DATA RESULTS AND DATA QUALITY Data from the primary CTD sensor pair (temperature and conductivity) were used for this cruise, with the exception of stations 8 and 30 - for these two stations the primary sensors were fouled, and data from the secondary sensor pair were used. 4.1. Conductivity/salinity The conductivity calibration and equivalent salinity results for the cruise are plotted in Figures 2 and 3, and the derived conductivity calibration coefficients are listed in Tables 3 and 4. Station groupings used for the calibration are included in Table 3. International standard seawater batch numbers used for salinometer standardization were as follows: station 1 P146 station 2 to 30 P147 station 31 to 63 P146 station 64 to 104 P147 station 105 to 109 P146 The salinometer (Guildline Autosal serial 62549) used for stations 1 to 104 appeared stable throughout the cruise. Stations 105 to 109 were analyzed back in Hobart immediately following the cruise, using salinometer serial 62550. Overall, CTD salinity for the cruise can be considered accurate to better than 0.0015 (PSS78). Close inspection of the vertical profiles of the bottle-CTD salinity difference values reveals a slight positive biasing of the order 0.001 (PSS78) for station 1, and a slight negative biasing of the same magnitude for station 47. This is most likely due to salinometer performance and/or bottle samples, and there is no significant diminishing of CTD salinity accuracy. 4.2. TEMPERATURE Primary and secondary CTD temperature data (t(D) and t(S) respectively) are compared for the cruise in Figure 4. CTD upcast burst data, obtained at each Niskin bottle stop, are used for the comparison. From previous cruises (e.g. Rosenberg, unpublished report, 2006), a very small pressure dependency of t(D)-t(S) for CTD704 of the order 0.0005°C is evident over the full ocean depth range. For cruise au0703, measurements were only taken down to ~2500 dbar, and a small pressure dependency similar to previous cruises is evident by the deepest measurements (Figure 4). Note that the magnitude of this pressure dependency lies within the assumed temperature accuracy of 0.001°C (i.e. the accredited temperature accuracy of the CSIRO calibration facility). Also note that without some temperature standard for comparison, it cannot be determined whether the 2 temperature sensors have the same or different pressure dependencies. 4.3. PRESSURE Surface pressure offsets for each cast (Table 5) were obtained from inspection of the data before the package entered the water. For station 24, logging commenced when the CTD was already in the water, and the surface pressure offset was estimated from surrounding stations. 4.4. DISSOLVED OXYGEN CTD oxygen data for his cruise were calibrated as whole profile fits - with the limited depth range for the CTD deployments, splitting profiles into separate shallow and deep calibrations was not required. The CTD oxygen calibration results are plotted in Figure 5, and the derived calibration coefficients are listed in Table 6. Overall the calibrated CTD oxygen agrees with the bottle data to well within 1% of full scale (where full scale is ~350 μmol/l above 750 dbar, and ~240 μmol/l below 750 dbar). Reliable calibration of a CTD dissolved oxygen profile is only possible with an adequate profile of bottle oxygen samples. The Niskin bottle sampling scheme for this cruise resulted in many CTD stations with either low numbers of bottle oxygen samples, or none at all. For the former, only that part of the CTD oxygen profile covered by samples was usable; for the latter, CTD oxygen data were not usable. Figure 6 summarizes calibrated CTD oxygen data coverage. Note that oxygen bottle samples for stations 105 to 109 were analyzed back in Hobart, immediately following the cruise. 4.5. FLUORESCENCE, PAR, TRANSMITTANCE All fluorescence and transmittance data have a calibration, as supplied by the manufacturer (Table 2), applied to the data. PAR sensor data are uncalibrated, and supplied as raw voltages. The data have not been verified by linkage to other data sources (e.g. chlorophyll-a concentration data, particulate data, etc). In the CTD 2 dbar averaged data files, both downcast and upcast data are supplied for fluorescence, PAR and transmittance. In these files, fluorescence and transmittance data are not in fact averages: fluorescence data are the minimum value within each 2 dbar bin, providing a profile "envelope" which minimizes the spikiness of the data; transmittance data are the maximum value within each 2 dbar bin, again minimizing the spikiness of the data. An additional parameter describing the spikiness of the transmittance data is supplied, calculated as follows. Pressure monotonic data (increasing for downcast, decreasing for upcast) are first formed from the full 24 Hz data, omitting equal pressure points as well as pressure reversals. For each transmittance reading tr(mon) in the montonic data, transmittance "spike size" trsize is given by the deviation from the transmittance maximum envelope, i.e. trsize = tr(intero) - tr(mon) where tr(intero) = trmax(bin1) + [(p(bin2) - p(bin1))/(p(bin2) - p(bin1) x (trmax(bin2) - trmax(bin1)] p(mon) = the pressure value corresponding with tr(mon) p(bin1) = the nearest 2 dbar pressure bin less than p(mon) p(bin2) = the nearest 2 dbar pressure bin greater than p(mon) trmax(bin1) = the 2 dbar maximum transmittance value for pressure bin p(bin1) trmax(bin2) = the 2 dbar maximum transmittance value for pressure bin p(bin2) (i.e. tr(intero) is the transmittance value from the 2 dbar transmittance maximum envelope, linearly interpolated to p(mon)). For a small number of cases in steep vertical gradients, tr(intero) is a small negative value. This is due to the pressure mismatch between the even pressure bin to which tr(max) is assigned, and the actual pressure value at which tr(max) occurs. For these cases, the tr(interp) value is changed to zero. Lastly, the transmittance "spikiness" trspike for each 2 dbar bin is the standard deviation of trsize values in each bin, i.e. n trspike = {[∑ (trsize(i) - trsize(mean))^2]/(n - 1)}^(1/2) i=1 where n = number of trsize values in the 2 dbar bin trsize(mean) = mean of the trsize values in the 2 dbar bin In the bottle data files, fluorescence and transmittance (and PAR) values are the averages of 10 second bursts of CTD data, and thus include all the data spikes within each 10 second averaging period. For comparison with Niskin bottle data, these 10 second averages best represent (short of referring to the full 24 Hz data) what the Niskin bottle samples as the package moves up and down with the swell prior to bottle closure. Note that these fluorescence and transmittance data are different to the data in the CTD 2 dbar averaged files (described above). The plumbing arrangement used for the transmissometer during the first 35 stations (mentioned above in section 2) caused bad downcast transmittance data for several stations. These bad data, listed in Table 7, were removed from the data files. 4.6. NUTRIENTS Nutrients measured on the cruise were phosphate, total nitrate (i.e. nitrate+nitrite), silicate, ammonia, and nitrite (only up to station 86). Appendix 1 (by Neale Johnston) gives some details on analysis methods. Suspect nutrient values not deleted from the bottle data files are listed in Table 8. Nitrate+nitrite versus phosphate data are shown in Figure 7. A group of depressed phosphate values are evident in the figure, around nitrate+nitrite ≈ 5 µmol/l. These values are from the tops of various profiles up to station 32, and appear to be real features. Only limited data were available from other cruises for comparison with the au0703 nutrient data, and only very rough comparisons were possible. In general, low level readings from the Lachat AutoAnalyzer, including low level near surface phosphate and nitrate+nitrite data, and all ammonia and nitrite data, should be used with caution. The accuracy for these low level values is unknown. 4.7. ADDITIONAL CTD DATA PROCESSING/QUALITY NOTES • Station 3 - the primary CTD sensors were fouled for part of the downcast profile, and these data were deleted from the 2 dbar averaged file. • Station 7 - the salinity value flagged as -1 in the bottle data file was due to a CTD data spike in the primary sensor pair. • Station 26 - after deployment of the CTD, there was no stop to wait for the pumps to come on. Most of the downcast for this very shallow cast was therefore unusable. • Stations 27, 32, 34, 57 - after waiting for the pumps to come on, the package was not returned to a shallower position to commence the downcast (due to swell). The downcast profile for these stations commences between 20 and 40 dbar. • Station 61 - top 2 Niskins tripped on the fly, due to heavy rolling of ship. • Station 86 - the pressure sensor was fouled just prior to firing of bottle 24. Data used for CTD burst averages were shifted forward by 100 scans (i.e. 4.17 seconds). • Stations 1 and 94 - logging ended before the CTD left the water. The last few bins of upcast fluorescence, PAR and transmittance data are therefore missing. • Station 96 - the CTD sensor tubes and fluorometer sensor cap were not removed prior to deployment. The only usable profiles for this station are transmittance and PAR. • For version of WOCE "Exchange" format bottle data file with µmol/kg units for nutrient data (available on request) - a laboratory temperature of 19°C was used for conversion of units from μmol/l to μmol/kg. 4.8. ADDITIONAL CTD SENSOR NOTES • The ocean bottom was rarely approached on this cruise, however on both occasion where the bottom was in altimeter range, the 500 kHz altimeter (50 m range) gave reliable readings, while the 200 kHz altimeter (100 m range) did not work. • The secondary temperature sensor malfunctioned on several occasion during the first 9 stations (possibly due to a bad connector), in turn causing bad secondary conductivity data. When this occurred, secondary conductivity data took a while to recover. • Data from the old Antarctic Division PAR sensor were unusable - not a worry, as good data were obtained from the Biospherical Instruments PAR sensor. 5. ADCP The hull mounted ADCP on the Aurora Australis is described in Rosenberg (unpublished report, 1999), with the following updates: (i) There is no longer a Fugro differential GPS system - all GPS data, including heading, come from the Ashtech 3D system. (ii) Triggering of the 12 kHz sounder and the higher frequency hydroacoustics array are now separate, resulting in a higher ping rate for the ADCP (linked to the higher frequency hydroacoustics array). Logging parameters and calibration coefficients for the cruise are summarized in Table 9. Current vectors for the cruise are plotted in Figures 8a and b; the apparent vertical current shear error for different ship speed classes is plotted in Figure 9. In general, ADCP data are contaminated by ship's motion when the ship accelerates i.e. changes direction or speed. Noise and turbulence often diminish ADCP data quality when the ship travels at speeds greater than ~13 knots, or during rough sea states. Thus the best quality ADCP data is when the ship is steaming in a straight line at a suitable constant speed, and during milder sea conditions. The most reliable data are collected when the ship is "on station" (on station data is defined here as data where ship speed ≤ 0.35 m/s). An erroneous vertical ADCP current shear occurs when the ship is underway. This shear has a magnitude for this cruise of up to ~0.13 m/s over the ADCP current profile (Figure 9), although more often ~0.05-0.08 m/s. A likely cause for this error is acoustic ringing against a small air/water interface inside the transducer seachest. From Figure 9, when the ship is underway the effect is most significant over bins 1 to 10, and data from these bins should be treated with caution. Also from the figure, when the ship is travelling at ≤ 1 m/s the effect is no longer significant. 6. UNDERWAY MEASUREMENTS Underway data were logged to an Oracle database on the ship. Quality control for this cruise was largely automated. 1 minute averaged underway data are contained in the files sazsense.txt (column formatted text file) and sazsenseora.mat (matlab format). Note that the latitude and longitude data in these files are 1 minute instantaneous values (i.e. not averaged). Bathymetry data for the cruise were not processed, and depths are all null values in the underway data files. Underway salinity data from the Antarctic Division thermosalinograph (in the oceanographic lab) display a response lag which becomes significant when crossing frontal regions where the horizontal gradients are high (Bronte Tilbrook, CSIRO, personal communication); these salinity data should not be used. Alternative underway salinity data were obtained from a separate CSIRO thermosalinograph in lab 1 (P.I. Bronte Tilbrook, CSIRO), and these data are considered reliable. Underway temperature data from the Antarctic Division hull mounted temperature sensor near the sea water inlet are good. A correction for the hull mounted temperature sensor and the lab 1 salinity was derived by comparing the underway data to CTD temperature and salinity data at 8 dbar (Figures 10a and b). The following corrections were then applied to the underway data: T = T(dls) - 0.022 S = S(dls) + 0.077 for corrected underway temperature and salinity T and S respectively, and uncorrected values T(dls) and S(dls). REFERENCES Rosenberg, M., unpublished. Aurora Australis ADCP data status. Antarctic Cooperative Research Centre, unpublished report, November 1999. 51 pp. Rosenberg, M., unpublished. BROKE West Survey, Marine Science Cruise AU0603 - Oceanographic Field Measurements and Analysis. ACE Cooperative Research Centre, unpublished report, July 2006. 24 pp. Rosenberg, M., Fukamachi, Y., Rintoul, S., Church, J., Curran, C., Helmond, I., Miller, K., McLaughlan, D., Berry, K., Johnston, N. and Richman, J., in preparation. Kerguelen Deep Western Boundary Current Experiment and CLIVAR I9 transect, marine science cruises AU0304 and AU0403 - oceanographic field measurements and analysis. ACE CRC Research Report. ACKNOWLEDGEMENTS Thanks to all scientific personnel who participated in the cruise, and to the crew of the RSV Aurora Australis. Special thanks to the oceanography team for a great job collecting the data. TABLE 1. Summary of station information for cruise au0703. All times UTC; "TEST" = test cast, "transit" = transit station; "process" = process station; "alt" = minimum altimeter value (m), "maxp" = maximum pressure (dbar). __________________________________________________________________________________________________________________________________________________________________ start of CTD bottom of CTD end of CTD CTD station date time latitude longitude depth time latitude longitude depth time latitude longitude depth alt maxp ------------ ----------- ------ ---------- ----------- ----- ------ ---------- ----------- ----- ------ ---------- ----------- ----- ---- ---- 001 TEST 19 Jan 2007 120309 43 50.48 S 144 44.11 E 3176 123908 43 50.39 S 144 43.80 E - 132700 43 50.21 S 144 43.51 E - - 1503 002 transit 19 Jan 2007 155939 43 50.15 S 144 41.57 E 3185 163543 43 50.07 S 144 41.27 E - 171713 43 49.96 S 144 40.93 E - - 1001 003 transit 20 Jan 2007 004550 45 00.01 S 142 58.87 E 4900 014537 44 59.85 S 142 59.05 E - 025526 44 59.59 S 142 59.20 E - - 2502 004 transit 20 Jan 2007 110647 44 55.13 S 143 01.70 E 4900 112511 44 55.04 S 143 01.69 E - 120755 44 54.80 S 143 01.42 E - - 1004 005 transit 20 Jan 2007 135503 44 53.33 S 143 03.19 E 4300 141311 44 53.26 S 143 03.15 E - 145619 44 53.06 S 143 02.99 E - - 801 006 transit 21 Jan 2007 002451 45 59.84 S 141 17.79 E 4700 004210 45 59.75 S 141 17.78 E - 011449 45 59.46 S 141 17.82 E - - 1001 007 process1 21 Jan 2007 100833 46 23.46 S 140 39.25 E 4283 105304 46 23.46 S 140 39.35 E - 115939 46 23.29 S 140 39.41 E - - 2504 008 process1 21 Jan 2007 153549 46 18.94 S 140 39.68 E 4500 154038 46 18.95 S 140 39.70 E - 155753 46 18.97 S 140 39.80 E - - 102 009 process1 21 Jan 2007 173724 46 19.07 S 140 39.02 E 4500 175450 46 19.14 S 140 39.04 E - 182249 46 19.24 S 140 39.14 E - - 1001 010 process1 22 Jan 2007 012838 46 19.25 S 140 36.06 E 4400 013910 46 19.34 S 140 36.06 E - 021243 46 19.53 S 140 36.09 E - - 405 011 process1 22 Jan 2007 103533 46 19.30 S 140 36.67 E 4300 105547 46 19.33 S 140 36.67 E - 113846 46 19.46 S 140 36.53 E - - 1002 012 process1 22 Jan 2007 190330 46 22.98 S 140 28.79 E 4800 190930 46 23.01 S 140 28.81 E - 193141 46 23.14 S 140 28.77 E - - 203 013 process1 22 Jan 2007 231116 46 24.64 S 140 25.23 E 4300 231621 46 24.66 S 140 25.21 E - 232959 46 24.73 S 140 25.17 E - - 153 014 process1 23 Jan 2007 015953 46 25.90 S 140 31.23 E 4200 024304 46 26.07 S 140 31.04 E - 035518 46 26.17 S 140 30.58 E - - 2509 015 process1 23 Jan 2007 120040 46 26.61 S 140 30.05 E 4305 121754 46 26.62 S 140 30.00 E - 130217 46 26.73 S 140 29.76 E - - 804 016 process1 23 Jan 2007 154102 46 27.70 S 140 24.66 E 4300 154511 46 27.69 S 140 24.65 E - 155816 46 27.67 S 140 24.69 E - - 101 017 process1 23 Jan 2007 170738 46 27.37 S 140 23.90 E 4050 172930 46 27.37 S 140 23.86 E - 175854 46 27.35 S 140 23.84 E - - 1004 018 process1 23 Jan 2007 210924 46 27.39 S 140 21.20 E 4450 211706 46 27.38 S 140 21.16 E - 215645 46 27.46 S 140 21.09 E - - 202 019 process1 23 Jan 2007 234225 46 29.75 S 140 18.39 E 4700 000110 46 29.79 S 140 18.27 E - 003718 46 29.89 S 140 17.98 E - - 804 020 process1 24 Jan 2007 212618 46 33.29 S 140 38.53 E 4500 213154 46 33.27 S 140 38.54 E - 221404 46 33.17 S 140 38.76 E - - 203 021 process1 25 Jan 2007 000513 46 33.23 S 140 37.73 E 4600 001119 46 33.22 S 140 37.75 E - 003341 46 33.19 S 140 37.78 E - - 201 022 process1 25 Jan 2007 031002 46 33.10 S 140 37.83 E 4100 031240 46 33.08 S 140 37.80 E - 032444 46 33.08 S 140 37.72 E - - 100 023 process1 25 Jan 2007 060232 46 32.89 S 140 39.79 E 4300 060544 46 32.89 S 140 39.77 E - 063317 46 32.87 S 140 39.41 E - - 201 024 process1 25 Jan 2007 092346 46 33.74 S 140 38.10 E 4700 092954 46 33.74 S 140 38.02 E - 093335 46 33.77 S 140 38.02 E - - 37 025 process1 25 Jan 2007 120839 46 34.12 S 140 37.13 E 4600 121258 46 34.13 S 140 37.13 E - 123825 46 34.15 S 140 37.13 E - - 204 026 process1 25 Jan 2007 150248 46 34.05 S 140 39.50 E 4800 150400 46 34.05 S 140 39.50 E - 151615 46 34.05 S 140 39.56 E - - 39 027 process1 25 Jan 2007 180424 46 34.72 S 140 37.56 E 4800 181049 46 34.73 S 140 37.51 E - 181559 46 34.74 S 140 37.46 E - - 37 028 process1 25 Jan 2007 210559 46 35.11 S 140 36.94 E 4800 211032 46 35.11 S 140 36.91 E - 213615 46 35.02 S 140 36.82 E - - 202 029 process1 25 Jan 2007 231020 46 34.64 S 140 38.92 E 4600 231113 46 34.64 S 140 38.93 E - 231943 46 34.62 S 140 38.99 E - - 40 030 process1 25 Jan 2007 235637 46 34.78 S 140 38.48 E 4650 001939 46 34.76 S 140 38.49 E - 005840 46 34.60 S 140 38.47 E - - 1000 031 process1 26 Jan 2007 114447 46 28.55 S 140 20.24 E 4400 123419 46 28.47 S 140 20.09 E - 134307 46 28.28 S 140 19.28 E - - 2504 032 process1 26 Jan 2007 153728 46 29.60 S 140 17.90 E 4500 154034 46 29.61 S 140 17.90 E - 155030 46 29.63 S 140 17.83 E - - 51 033 process1 28 Jan 2007 140934 46 42.64 S 140 12.02 E 4600 142727 46 42.62 S 140 11.86 E - 151139 46 42.55 S 140 11.40 E - - 805 034 process1 28 Jan 2007 162405 46 39.15 S 140 17.12 E 4600 165211 46 39.18 S 140 16.88 E - 173434 46 39.25 S 140 16.52 E - - 1004 035 transit 29 Jan 2007 100750 49 00.01 S 142 59.92 E 3940 101534 48 59.97 S 142 59.92 E - 104408 48 59.74 S 142 59.80 E - - 402 036 transit 29 Jan 2007 123838 48 59.44 S 143 00.26 E 3940 132347 48 59.21 S 143 00.30 E - 142735 48 58.99 S 143 00.34 E - - 2505 037 process2 31 Jan 2007 164644 53 59.86 S 145 55.19 E 2800 165349 53 59.83 S 145 55.19 E - 170903 53 59.74 S 145 55.20 E - - 205 038 process2 01 Feb 2007 014142 54 00.14 S 145 52.91 E 2700 023722 54 00.28 S 145 52.98 E 2779 035256 54 00.26 S 145 52.80 E - 40.0 2782 039 process2 01 Feb 2007 052503 54 00.24 S 145 52.11 E 2850 052926 54 00.26 S 145 52.13 E - 054857 54 00.33 S 145 52.27 E - - 201 __________________________________________________________________________________________________________________________________________________________________ TABLE 1: (cntd) __________________________________________________________________________________________________________________________________________________________________ start of CTD bottom of CTD end of CTD CTD station date time latitude longitude depth time latitude longitude depth time latitude longitude depth alt maxp ------------- ----------- ------ ---------- ----------- ----- ------ ---------- ----------- ----- ------ ---------- ----------- ----- ---- ---- 040 process2 01 Feb 2007 071636 54 00.87 S 145 52.06 E 2700 073515 54 00.87 S 145 52.04 E - 082231 54 00.91 S 145 52.00 E - - 1001 041 process2 01 Feb 2007 101218 54 00.86 S 145 51.23 E 2600 101613 54 00.85 S 145 51.25 E - 103348 54 00.82 S 145 51.19 E - - 201 042 process2 01 Feb 2007 161111 54 03.13 S 146 09.91 E 2500 162947 54 03.17 S 146 10.06 E - 170553 54 03.23 S 146 10.40 E - - 1004 043 process2 02 Feb 2007 000203 54 01.04 S 146 07.65 E 2400 004709 54 01.21 S 146 07.65 E 2456 015303 54 01.36 S 146 07.38 E - 28.7 2464 044 process2 02 Feb 2007 032840 54 00.88 S 146 07.98 E 2500 034603 54 00.88 S 146 08.09 E - 042841 54 00.80 S 146 08.33 E - - 1001 045 process2 02 Feb 2007 103012 54 02.66 S 146 14.60 E 1500 103411 54 02.67 S 146 14.62 E - 104218 54 02.64 S 146 14.69 E - - 201 046 process2 02 Feb 2007 144557 54 07.66 S 146 19.15 E 2500 145553 54 07.64 S 146 19.19 E - 151126 54 07.64 S 146 19.21 E - - 200 047 process2 02 Feb 2007 161328 54 07.56 S 146 19.40 E 2500 163808 54 07.54 S 146 19.52 E - 171015 54 07.43 S 146 19.73 E - - 1004 048 process2 02 Feb 2007 214122 54 08.46 S 146 17.86 E 2250 214620 54 08.48 S 146 17.90 E - 221059 54 08.50 S 146 18.12 E - - 202 049 process2 03 Feb 2007 041536 54 09.10 S 146 18.38 E 2200 043124 54 09.08 S 146 18.47 E - 050807 54 09.04 S 146 18.68 E - - 803 050 process2 03 Feb 2007 062059 54 08.93 S 146 18.88 E 2300 062359 54 08.93 S 146 18.92 E - 063547 54 08.95 S 146 19.02 E - - 153 051 process2 03 Feb 2007 075031 54 08.26 S 146 18.41 E 2222 080639 54 08.27 S 146 18.51 E - 085445 54 08.24 S 146 18.92 E - - 1002 052 process2 03 Feb 2007 151227 54 07.96 S 146 27.80 E 3500 151632 54 07.97 S 146 27.83 E - 154119 54 08.06 S 146 28.15 E - - 203 053 process2 03 Feb 2007 211847 54 09.65 S 146 32.99 E 3350 212336 54 09.67 S 146 33.05 E - 214900 54 09.73 S 146 33.20 E - - 202 054 process2 04 Feb 2007 031404 54 10.80 S 146 30.52 E 3500 032120 54 10.80 S 146 30.51 E - 034545 54 10.85 S 146 30.37 E - - 200 055 process2 04 Feb 2007 050424 54 11.15 S 146 28.45 E 3500 052440 54 11.27 S 146 28.60 E - 060433 54 11.44 S 146 28.75 E - - 1007 056 process2 04 Feb 2007 091355 54 11.15 S 146 30.57 E 3400 091925 54 11.15 S 146 30.58 E - 094338 54 11.18 S 146 30.80 E - - 202 057 process2 04 Feb 2007 155024 54 15.76 S 146 43.90 E 3600 160040 54 15.82 S 146 44.04 E - 162852 54 15.92 S 146 44.35 E - - 202 058 process2 05 Feb 2007 180327 54 27.53 S 147 07.94 E 3400 183419 54 27.59 S 147 08.46 E - 190759 54 27.64 S 147 08.81 E - - 1000 059 process2 06 Feb 2007 051304 54 26.89 S 147 06.25 E 3500 052720 54 26.96 S 147 06.37 E - 061008 54 27.01 S 147 06.85 E - - 827 060 transit 06 Feb 2007 151616 53 00.40 S 146 50.01 E 4100 152759 53 00.72 S 146 50.27 E - 155212 53 01.37 S 146 50.75 E - - 402 061 transit 06 Feb 2007 224410 52 00.59 S 147 42.68 E 4000 233246 52 00.56 S 147 42.89 E - 003646 52 00.47 S 147 43.05 E - - 2503 062 transit 07 Feb 2007 095509 50 59.12 S 148 34.16 E 4251 104212 50 58.43 S 148 34.57 E - 114641 50 57.78 S 148 35.07 E - - 2506 063 transit 07 Feb 2007 131448 50 56.28 S 148 34.74 E 4200 132518 50 56.14 S 148 34.87 E - 135219 50 55.83 S 148 35.34 E - - 403 064 transit 07 Feb 2007 201106 50 52.48 S 148 39.04 E 4200 203350 50 52.27 S 148 39.38 E - 211505 50 51.98 S 148 40.04 E - - 1005 065 transit 08 Feb 2007 023250 50 00.18 S 149 26.48 E 3910 024106 50 00.13 S 149 26.53 E - 030739 49 59.98 S 149 26.50 E - - 402 066 transit 08 Feb 2007 080543 49 59.30 S 149 25.36 E 3900 082454 49 59.24 S 149 25.57 E - 091141 49 59.14 S 149 26.00 E - - 1003 067 transit 08 Feb 2007 111740 49 59.87 S 149 25.20 E 3900 120142 49 59.71 S 149 25.55 E - 130122 49 59.49 S 149 26.10 E - - 2502 068 transit 08 Feb 2007 210653 48 59.93 S 150 20.06 E 1500 213108 48 59.89 S 150 20.21 E - 220426 48 59.84 S 150 20.39 E - - 1004 069 transit 09 Feb 2007 042322 48 00.41 S 151 13.10 E 4000 051054 48 00.60 S 151 13.16 E - 061318 48 00.89 S 151 13.14 E - - 2506 070 transit 09 Feb 2007 102837 48 01.63 S 151 13.00 E 4171 103633 48 01.66 S 151 13.00 E - 110100 48 01.79 S 151 13.22 E - - 402 071 transit 09 Feb 2007 133227 48 03.50 S 151 11.72 E 4300 135125 48 03.67 S 151 11.90 E - 143419 48 04.09 S 151 12.29 E - - 1001 072 transit 09 Feb 2007 232837 46 59.84 S 152 04.43 E 4800 234903 46 59.87 S 152 04.55 E - 001908 47 00.00 S 152 04.70 E - - 1001 073 transit 10 Feb 2007 061218 45 59.65 S 152 54.55 E 4500 062824 45 59.63 S 152 54.60 E - 070409 45 59.55 S 152 54.56 E - - 1000 074 transit 10 Feb 2007 094206 45 31.31 S 153 06.26 E 4700 100027 45 31.28 S 153 06.38 E - 103930 45 31.13 S 153 07.00 E - - 1002 075 transit 10 Feb 2007 133500 45 59.89 S 153 11.81 E 4700 135626 45 59.79 S 153 11.89 E - 143724 45 59.66 S 153 12.17 E - - 1001 076 process3 10 Feb 2007 184616 45 29.95 S 153 11.99 E 4600 185910 45 29.95 S 153 12.11 E - 190754 45 29.92 S 153 12.23 E - - 401 077 process3 11 Feb 2007 011109 45 32.91 S 153 10.74 E 4500 011853 45 32.88 S 153 10.70 E - 014248 45 32.93 S 153 10.57 E - - 401 078 process3 11 Feb 2007 044026 45 32.90 S 153 10.58 E 4600 045956 45 32.90 S 153 10.61 E - 053924 45 33.08 S 153 10.71 E - - 1002 079 process3 11 Feb 2007 110422 45 33.47 S 153 10.58 E 4600 114532 45 33.31 S 153 10.66 E - 124738 45 32.94 S 153 10.96 E - - 2502 080 process3 11 Feb 2007 151036 45 30.77 S 153 13.45 E 4700 151838 45 30.73 S 153 13.46 E - 153002 45 30.67 S 153 13.48 E - - 201 __________________________________________________________________________________________________________________________________________________________________ TABLE 1: (cntd) _________________________________________________________________________________________________________________________________________________________________ start of CTD bottom of CTD end of CTD CTD station date time latitude longitude depth time latitude longitude depth time latitude longitude depth alt maxp ------------- ----------- ------ ---------- ----------- ----- ------ ---------- ----------- ----- ------ ---------- ----------- ----- --- ---- 081 process3 11 Feb 2007 161116 45 30.87 S 153 13.66 E 4600 163326 45 30.79 S 153 13.67 E - 170144 45 30.71 S 153 13.72 E - - 1001 082 process3 11 Feb 2007 190832 45 31.01 S 153 14.20 E 4600 191254 45 30.98 S 153 14.21 E - 192747 45 30.90 S 153 14.24 E - - 200 083 process3 12 Feb 2007 021341 45 26.41 S 153 17.37 E 4500 022101 45 26.39 S 153 17.35 E - 024711 45 26.42 S 153 17.10 E - - 403 084 process3 12 Feb 2007 073226 45 27.14 S 153 16.96 E 4600 074823 45 27.16 S 153 17.09 E - 082306 45 27.10 S 153 17.51 E - - 801 085 process3 12 Feb 2007 164151 45 27.13 S 153 20.51 E 3700 170123 45 27.16 S 153 20.63 E - 173803 45 27.28 S 153 20.86 E - - 1002 086 process3 12 Feb 2007 200730 45 27.86 S 153 21.01 E 4600 202334 45 27.83 S 153 21.16 E - 210129 45 27.66 S 153 21.61 E - - 902 087 transit 13 Feb 2007 020503 44 45.22 S 153 00.28 E 4800 021250 44 45.21 S 153 00.38 E - 023931 44 45.21 S 153 00.74 E - - 413 088 transit 13 Feb 2007 054338 45 06.40 S 153 13.57 E 4750 054954 45 06.38 S 153 13.63 E - 061458 45 06.37 S 153 14.12 E - - 402 089 process3 13 Feb 2007 113237 45 26.09 S 153 27.28 E 4500 113422 45 26.09 S 153 27.27 E - 114339 45 26.10 S 153 27.29 E - - 101 090 process3 13 Feb 2007 150512 45 26.22 S 153 28.27 E 4700 151230 45 26.31 S 153 28.34 E - 152502 45 26.32 S 153 28.48 E - - 207 091 transit 13 Feb 2007 211536 44 56.41 S 152 23.93 E 4700 212306 44 56.41 S 152 23.98 E - 215058 44 56.33 S 152 24.26 E - - 401 092 transit 14 Feb 2007 015641 44 56.72 S 152 27.95 E 4600 020414 44 56.75 S 152 28.06 E - 023218 44 56.74 S 152 28.45 E - - 401 093 transit 14 Feb 2007 035053 44 56.07 S 152 29.59 E 4600 040703 44 56.07 S 152 29.79 E - 044853 44 55.87 S 152 30.36 E - - 1003 094 transit 14 Feb 2007 072416 45 13.50 S 152 45.46 E 4600 073115 45 13.50 S 152 45.49 E - 080900 45 13.53 S 152 45.72 E - - 400 095 transit 14 Feb 2007 102151 45 16.41 S 153 00.79 E 4500 102802 45 16.43 S 153 00.83 E - 105139 45 16.55 S 153 01.16 E - - 408 096 process3 14 Feb 2007 171014 45 30.14 S 153 37.09 E 4500 173419 45 30.19 S 153 37.19 E - 180330 45 30.32 S 153 37.49 E - - 1004 097 process3 14 Feb 2007 220940 45 30.47 S 153 36.47 E 4500 225648 45 30.42 S 153 36.68 E - 001546 45 30.37 S 153 36.97 E - - 2505 098 process3 15 Feb 2007 073453 45 30.70 S 153 38.78 E 4500 074228 45 30.76 S 153 38.87 E - 080534 45 30.81 S 153 39.10 E - - 403 099 process3 15 Feb 2007 130845 45 31.40 S 153 36.14 E 4400 131656 45 31.42 S 153 36.14 E - 134452 45 31.53 S 153 36.32 E - - 438 100 process3 15 Feb 2007 150607 45 32.11 S 153 36.89 E 4600 151050 45 32.14 S 153 36.91 E - 152320 45 32.17 S 153 36.85 E - - 202 101 process3 15 Feb 2007 190610 45 32.05 S 153 41.98 E 4430 191317 45 32.04 S 153 42.00 E - 195025 45 32.10 S 153 42.17 E - - 411 102 process3 16 Feb 2007 010459 45 32.17 S 153 39.77 E 4500 011159 45 32.15 S 153 39.79 E - 013528 45 32.20 S 153 39.88 E - - 403 103 process3 16 Feb 2007 070450 45 33.33 S 153 40.15 E 4400 071131 45 33.34 S 153 40.15 E - 073729 45 33.19 S 153 40.34 E - - 403 104 process3 16 Feb 2007 093308 45 35.42 S 153 40.72 E 4400 094929 45 35.45 S 153 40.79 E - 102401 45 35.69 S 153 40.99 E - - 901 105 transit 18 Feb 2007 033238 44 14.39 S 150 11.81 E 2600 041022 44 14.45 S 150 11.74 E - 051251 44 14.43 S 150 11.80 E - - 2512 106 transit 18 Feb 2007 070422 44 14.06 S 150 12.53 E 2600 071347 44 14.11 S 150 12.61 E - 073813 44 14.23 S 150 12.85 E - - 403 107 transit 19 Feb 2007 035501 43 39.42 S 148 35.83 E 3700 040248 43 39.52 S 148 35.81 E - 042729 43 39.82 S 148 35.53 E - - 405 108 transit 19 Feb 2007 055122 43 41.24 S 148 34.87 E 3700 060935 43 41.42 S 148 34.84 E - 064703 43 41.88 S 148 34.60 E - - 1019 109 transit 19 Feb 2007 090511 43 43.21 S 148 33.23 E 3700 094317 43 43.27 S 148 33.02 E - 104347 43 43.27 S 148 32.72 E - - 2506 _________________________________________________________________________________________________________________________________________________________________ TABLE 2. CTD serial 704 calibration coefficients and calibration dates for cruise au0703. Note that platinum temperature calibrations are for the ITS-90 scale. Pressure slope/offset, temperature and conductivity values are from the CSIRO Division of Marine and Atmospheric Research calibration facility. Remaining values are manufacturer supplied. ________________________________________________________________________________________________ Primary Temperature, serial 4248, 24/07/2006 Secondary Temperature, serial 4246, 24/07/2006 --------------------------------------------- ---------------------------------------------- G : 4.3872750e-003 G : 3.9791760e-003 H : 6.5089714e-004 H : 6.2178475e-004 I : 2.3231241e-005 I : 1.8665869e-005 J : 1.8524638e-006 J : 1.5651022e-006 F0 : 1000.000 F0 : 1000.000 Slope : 1.00000000 Slope : 1.00000000 Offset : 0.0000 Offset : 0.0000 Primary Conductivity, serial 2977, 24/07/2006 Secondary Conductivity, serial 2808, 24/07/2006 ---------------------------------------------- ----------------------------------------------- G : -1.0730631e+001 G : -9.2832718e+000 H : 1.4850393e+000 H : 1.4248306e+000 I : 5.1899715e-005 I : -7.1457502e-005 J : 7.3324498e-005 J : 9.4841234e-005 CTcor : 3.2500e-006 CTcor : 3.2500e-006 CPcor : -9.57000000e-008 CPcor : -9.57000000e-008 Slope : 1.00000000 Slope : 1.00000000 Offset : 0.00000 Offset : 0.00000 Pressure, serial 89084, 09/08/2006 Oxygen, serial 0178, 04/11/2006 ----------------------------------- ------------------------------- C1 : -4.989485e+004 Soc : 5.6550e-001 C2 : -1.030675e+000 Boc : 0.0000 C3 : 1.388810e-002 Offset : -0.5039 D1 : 3.863300e-002 Tcor : 0.0020 D2 : 0.000000e+000 Pcor : 1.350e-004 T1 : 3.010350e+001 Tau : 0.0 T2 : -5.657137e-004 T3 : 3.998260e-0 Fluorometer, serial 296, 23/05/2005 T4 : 2.345400e-009 ----------------------------------- T5 : 0.000000e+000 Vblank : 0.12 Slope : 1.000061 Scale factor : 7.000e+000 Offset : 0.9607 AD590M : 1.276320e-002 Transmissometer, serial 899DR, 08/11/2005 AD590B : -9.834110e+000 ----------------------------------------- A0 : -0.0130705 A1 : 0.214270 ________________________________________________________________________________________________ TABLE 3. CTD conductivity calibration coefficients. F(1) , F(2) and F(3) are respectively conductivity bias, slope and station-dependent correction calibration terms. n is the number of samples retained for calibration in each station grouping; s is the standard deviation of the conductivity residual for the n samples in the station grouping. Note: these are for the primary sensor pair; for CTD 8 and 30, data from the secondary sensor pair were used, and the coefficients in the table do not apply. _______________________________________________________________________________ stn grouping F(1) F(2) F(3) n s ------------- --------------- -------------- --------------- --- -------- 001 to 036 0.85922478E-03 0.99990161E-03 0.48370422E-09 310 0.000742 037 to 060 -0.72274696E-02 0.10001739E-02 -0.58525107E-10 221 0.000747 061 to 080 -0.50080844E-03 0.10000613E-02 -0.16215688E-08 213 0.000499 081 to 098 0.23089863E-02 0.10000102E-02 -0.16264460E-08 129 0.001243 099 to 104 0.29369010E-02 0.10000110E-02 -0.16673300E-08 54 0.000812 105 to 109 0.64693695E-02 0.99867054E-03 0.10596057E-07 67 0.001205 _______________________________________________________________________________ TABLE 4. Station-dependent-corrected conductivity slope term (F(2) + F(3) . N), for station number N, and F(2) and F(3) the conductivity slope and station-dependent correction calibration terms respectively. Note: for CTD 8 and 30, the slope term is from the secondary sensor pair. _________________________________________________________________________________________________________________ station (F(2) + F(3) . N) station (F(2) + F(3) . N) station (F(2) + F(3) . N) station (F(2) + F(3) . N) number number number number ------- ----------------- ------- ----------------- ------- ----------------- ------- ----------------- 1 0.99988747E-03 29 0.99990198E-03 57 0.10001614E-02 85 0.99987198E-03 2 0.99988799E-03 30 0.99966276E-03 58 0.10001614E-02 86 0.99987035E-03 3 0.99988851E-03 31 0.99990302E-03 59 0.10001613E-02 87 0.99986872E-03 4 0.99988903E-03 32 0.99990354E-03 60 0.10001613E-02 88 0.99986710E-03 5 0.99988954E-03 33 0.99990406E-03 61 0.99995909E-03 89 0.99986547E-03 6 0.99989006E-03 34 0.99990457E-03 62 0.99995752E-03 90 0.99986384E-03 7 0.99989058E-03 35 0.99990509E-03 63 0.99995596E-03 91 0.99986222E-03 8 0.99964935E-03 36 0.99990561E-03 64 0.99995439E-03 92 0.99986059E-03 9 0.99989162E-03 37 0.10001622E-02 65 0.99995282E-03 93 0.99985896E-03 10 0.99989214E-03 38 0.10001621E-02 66 0.99995125E-03 94 0.99985734E-03 11 0.99989265E-03 39 0.10001621E-02 67 0.99994969E-03 95 0.99985571E-03 12 0.99989317E-03 40 0.10001620E-02 68 0.99994812E-03 96 0.99985409E-03 13 0.99989369E-03 41 0.10001620E-02 69 0.99994655E-03 97 0.99985246E-03 14 0.99989421E-03 42 0.10001620E-02 70 0.99994498E-03 98 0.99985083E-03 15 0.99989473E-03 43 0.10001619E-02 71 0.99994342E-03 99 0.99985483E-03 16 0.99989525E-03 44 0.10001619E-02 72 0.99994185E-03 100 0.99985415E-03 17 0.99989576E-03 45 0.10001619E-02 73 0.99994028E-03 101 0.99985348E-03 18 0.99989628E-03 46 0.10001618E-02 74 0.99993872E-03 102 0.99985280E-03 19 0.99989680E-03 47 0.10001618E-02 75 0.99993715E-03 103 0.99985213E-03 20 0.99989732E-03 48 0.10001617E-02 76 0.99993558E-03 104 0.99985145E-03 21 0.99989784E-03 49 0.10001617E-02 77 0.99993401E-03 105 0.99978313E-03 22 0.99989836E-03 50 0.10001617E-02 78 0.99993245E-03 106 0.99979372E-03 23 0.99989887E-03 51 0.10001616E-02 79 0.99993088E-03 107 0.99980432E-03 24 0.99989939E-03 52 0.10001616E-02 80 0.99992931E-03 108 0.99981491E-03 25 0.99989991E-03 53 0.10001616E-02 81 0.99987848E-03 109 0.99982551E-03 26 0.99990043E-03 54 0.10001615E-02 82 0.99987686E-03 27 0.99990095E-03 55 0.10001615E-02 83 0.99987523E-03 28 0.99990146E-03 56 0.10001614E-02 84 0.99987360E-03 _________________________________________________________________________________________________________________ TABLE 5. Surface pressure offsets (i.e. poff, in dbar). For each station, these values are subtracted from the pressure calibration "offset" value from Table 2. ____________________________________________________________________________ stn poff stn poff stn poff stn poff stn poff stn poff --- ---- --- ---- --- ---- --- ---- --- ---- --- ---- 1 0.95 20 0.65 39 0.56 58 0.54 77 1.04 96 0.90 2 0.63 21 0.60 40 0.65 59 0.54 78 0.93 97 0.76 3 0.58 22 0.62 41 0.61 60 0.57 79 0.88 98 0.90 4 0.58 23 0.63 42 0.71 61 0.59 80 0.86 99 0.95 5 0.47 24 0.60 43 0.63 62 0.69 81 0.91 100 0.79 6 0.60 25 0.64 44 0.44 63 0.50 82 0.81 101 0.81 7 0.61 26 0.56 45 0.55 64 0.54 83 0.96 102 0.84 8 0.67 27 0.58 46 0.64 65 0.70 84 0.90 103 0.82 9 0.68 28 0.51 47 0.67 66 0.77 85 0.89 104 0.76 10 0.65 29 0.58 48 0.67 67 0.76 86 0.86 105 0.77 11 0.66 30 0.59 49 0.69 68 0.84 87 0.85 106 0.53 12 0.70 31 0.61 50 0.62 69 0.84 88 0.81 107 0.76 13 0.57 32 0.61 51 0.62 70 0.78 89 0.83 108 0.79 14 0.53 33 0.64 52 0.72 71 0.79 90 0.82 109 0.82 15 0.69 34 0.64 53 0.72 72 0.84 91 0.83 16 0.65 35 0.52 54 0.74 73 0.84 92 0.87 17 0.61 36 0.44 55 0.71 74 0.79 93 0.73 18 0.68 37 0.80 56 0.60 75 0.90 94 0.85 19 0.65 38 0.75 57 0.50 76 0.86 95 0.77 ____________________________________________________________________________ TABLE 6. CTD dissolved oxygen calibration coefficients for cruise au0703: slope, bias, tcor ( = temperature correction term), and pcor ( = pressure correction term). dox is equal to 2.8σ, for σ as defined in the CTD Methodology. __________________________________________________________________________________________________________________ stn slope bias tcor pcor dox stn slope bias tcor pcor dox ---- -------- --------- --------- -------- -------- --- -------- --------- --------- -------- -------- 1 0.533531 -0.234971 0.009847 0.000092 0.154112 56 0.622789 -0.361141 -0.001078 0.000227 0.089424 2 0.611262 -0.311012 0.004876 0.000014 0.127303 57 0.691422 -0.511385 -0.001597 0.000315 0.071593 3 0.502297 -0.212684 0.015264 0.000110 0.139094 58 0.592063 -0.298154 -0.001178 0.000145 0.133685 4 0.395942 -0.035662 0.019290 0.000171 0.114435 59 0.627398 -0.379162 -0.000005 0.000257 0.156463 5 0.596545 -0.307282 0.005942 0.000036 0.054670 60 0.537285 -0.167263 -0.001381 0.000017 0.075782 6 0.555232 -0.283225 0.010671 0.000118 0.056833 61 0.592836 -0.296082 -0.000997 0.000136 0.140805 7 0.579410 -0.288913 0.005531 0.000097 0.188718 62 0.573489 -0.267981 0.000511 0.000132 0.083040 8 - - - - - 63 0.626745 -0.374503 -0.000809 0.000150 0.055658 9 0.587934 -0.303937 0.007112 0.000074 0.064326 64 0.592590 -0.296243 -0.000576 0.000127 0.155797 10 0.690378 -0.529686 0.005110 0.000117 0.053671 65 0.594490 -0.311868 0.000272 0.000143 0.062669 11 0.534769 -0.235585 0.009539 0.000073 0.033839 66 0.599416 -0.312167 -0.001156 0.000146 0.100290 12 0.691684 -0.520362 0.004331 0.000080 0.054544 67 0.591138 -0.285446 -0.001907 0.000129 0.108693 13 - - - - - 68 0.596314 -0.300893 -0.001275 0.000135 0.043119 14 0.547492 -0.281555 0.010657 0.000122 0.162841 69 0.559357 -0.261020 0.002699 0.000141 0.076307 15 0.588812 -0.328808 0.006819 0.000090 0.091898 70 0.594423 -0.311088 0.000173 0.000136 0.029816 16 0.701029 -0.498117 0.000601 0.000083 0.010933 71 0.571187 -0.261287 0.000059 0.000136 0.048912 17 0.568921 -0.268367 0.007028 0.000059 0.14775 72 0.367522 0.040611 0.013573 0.000158 0.062976 18 0.492247 -0.124135 0.008470 0.000001 0.081500 73 0.575099 -0.318771 0.004194 0.000198 0.086627 19 0.495984 -0.165574 0.011230 0.000058 0.074953 74 0.271133 0.206562 0.019226 0.000151 0.135262 20 0.988604 -1.125186 0.000452 0.000260 0.041084 75 0.589002 -0.307428 0.001061 0.000151 0.111337 21 1.215239 -1.407491 -0.013898 0.000062 0.062999 76 - - - - - 22 - - - - - 77 0.692697 -0.506032 -0.001887 0.000175 0.114969 23 1.295518 -1.806445 0.000563 0.000659 0.043709 78 0.533933 -0.242146 0.006294 0.000150 0.070821 24 - - - - - 79 0.587948 -0.296134 -0.000795 0.000144 0.104721 25 0.698083 -0.632700 0.012437 0.000324 0.061084 80 0.258611 -0.058892 0.051674 0.000626 0.065325 26 - - - - - 81 0.584883 -0.295841 0.000534 0.000138 0.079591 27 - - - - - 82 0.417304 -0.063277 0.013823 0.000194 0.060979 28 0.654240 -0.469326 0.007422 0.000141 0.022733 83 0.592021 -0.325191 0.001634 0.000147 0.044411 29 - - - - - 84 0.564700 -0.260775 0.001534 0.000124 0.029286 30 0.587822 -0.305774 0.005662 0.000074 0.082830 85 0.520790 -0.199548 0.004848 0.000123 0.056928 31 0.538941 -0.241171 0.008864 0.000088 0.141150 86 0.506763 -0.205110 0.008329 0.000156 0.097307 32 - - - - - 87 0.742160 -0.500716 -0.008640 0.000047 0.078392 33 0.562691 -0.297560 0.007904 0.000117 0.086732 88 0.595524 -0.321156 0.000602 0.000148 0.102217 34 0.607250 -0.302570 0.000088 0.000070 0.042354 89 - - - - - 35 0.692725 -0.519195 0.000733 0.000132 0.035247 90 1.368823 -1.598109 -0.030197 0.001827 0.170616 36 0.518914 -0.236705 0.011278 0.000122 0.136185 91 0.598403 -0.293218 -0.001425 0.000088 0.099030 37 0.807060 -0.842258 0.008534 0.000828 0.071252 92 0.429604 -0.133461 0.014468 0.000274 0.189154 38 0.583468 -0.312685 0.004795 0.000135 0.194078 93 0.483383 -0.127786 0.004608 0.000082 0.161821 39 0.797739 -0.791190 0.002442 0.000471 0.109049 94 0.687870 -0.523619 0.000190 0.000258 0.053776 40 0.619110 -0.358274 -0.002383 0.000167 0.108540 95 0.433505 -0.140748 0.014328 0.000300 0.091396 41 - - - - - 96 - - - - - 42 0.586868 -0.331813 0.013843 0.000170 0.096752 97 0.513180 -0.227475 0.009967 0.000154 0.088182 43 0.595966 -0.309549 -0.000778 0.000133 0.102832 98 0.392681 -0.014353 0.013457 0.000158 0.048359 44 0.612990 -0.347827 -0.001774 0.000185 0.069648 99 0.492491 -0.129344 0.003370 0.000110 0.047894 45 - - - - - 100 0.419727 -0.439933 0.048293 0.003545 0.030213 46 0.593856 -0.310385 0.000236 0.000164 0.014029 101 0.569750 -0.268069 0.000375 0.000135 0.110373 47 0.607868 -0.325680 -0.000323 0.000158 0.188107 102 0.304088 0.167373 0.014166 0.000145 0.153787 48 0.645221 -0.380577 -0.005803 0.000021 0.169319 103 0.486027 -0.133387 0.004384 0.000142 0.147501 49 0.593216 -0.305578 0.001279 0.000164 0.184688 104 0.524186 -0.189284 0.003669 0.000093 0.111832 50 - - - - - 105 0.507897 -0.234044 0.009710 0.000164 0.118992 51 0.604264 -0.320789 0.001301 0.000171 0.124682 106 0.422287 -0.133685 0.016062 0.000255 0.149169 52 0.602443 -0.310360 -0.001458 0.000136 0.150009 107 0.695041 -0.495762 -0.001376 0.000137 0.105955 53 0.628083 -0.362105 -0.002224 0.000117 0.104327 108 0.527626 -0.252050 0.007658 0.000160 0.066279 54 0.601326 -0.303347 -0.001045 0.000176 0.052867 109 0.549920 -0.269794 0.004601 0.000149 0.158256 55 0.595682 -0.306872 -0.000034 0.000173 0.090291 __________________________________________________________________________________________________________________ TABLE 7. Bad transmissometer downcast data deleted from the 2 dbar averaged files. ___________________________________________________________________ station bad transmissometer station bad transmissometer number data (dbar) number data (dbar) ------- ------------------- ------- ------------------- 3 2 - 50 25 2 - 94 7 2 - 398 26 2 - 38 16 whole station 27 2 - 22 17 2 - 14 31 2 - 104 19 2 - 6 32 2 - 48 20 2 - 148 33 2 - 158 22 whole station 35 2 - 210 ___________________________________________________________________ TABLE 8. Suspect nutrient sample values (not deleted from bottle data file) for cruise au0703. ____________________________________________________________________________ PHOSPHATE NITRATE SILICATE station rosette station rosette station rosette number position number position number position -------- -------- ------- -------- ------- -------- 19 7 19 7 19 7 38 12 38 13 38 12 39 8 42 3 42 3 42 3 46 19 50 1,24 50 1,24 51 whole stn 52 23 62 23 AMMONIA station rosette number position -------- -------- 20 18 24 22 96 2 103 9 105 12,16 ____________________________________________________________________________ TABLE 9. ADCP logging and calibration parameters for cruise au0703. _________________________________________________________________________________ ping parameters bottom track ping parameters -------------- ------- ------------------------------------- no. of bins: 60 no. of bins: 128 bin length: 8 m bin length: 4 m pulse length: 8 m pulse length: 32 m delay: 4 m ping interval: minimum ping interval: same as profiling pings reference layer averaging: bins 8 to 20 XROT: 822 ensemble averaging duration: 3 min. (for logged data) 30 min. (for final processed data) calibration α (± standard deviation) 1+ β (± standard deviation) no. of calibration sites ------------------------ --------------------------- ------------------------ 2.507 ± 0.375 1.0388 ± 0.010 62 _________________________________________________________________________________ Figure 1. CTD cast positions and ship's track for cruise au0703. Figure 2. Conductivity ratio c(btl)/c(cal) versus station number for cruise au0703. The solid line follows the mean of the residuals for each station; the broken lines are ± the standard deviation of the residuals for each station. c(cal) = calibrated CTD conductivity from the CTD upcast burst data; c(btl) = 'in situ' Niskin bottle conductivity, found by using CTD pressure and temperature from the CTD upcast burst data in the conversion of Niskin bottle salinity to conductivity. Figure 3. Salinity residual (s(btl) - s(cal) versus station number for cruise au0703. The solid line is the mean of all the residuals; the broken lines are ± the standard deviation of all the residuals. s(cal) = calibrated CTD salinity; s(btl) = Niskin bottle salinity value. Figure 4. Difference between primary and secondary temperature sensor (t(¬p) - t(s) for CTD upcast burst data from Niskin bottle stops, for cruise au0703. Figure 5. Dissolved oxygen residual (o(btl) - o(cal)) versus station number for cruise au0703. The solid line follows the mean residual for each station; the broken lines are ± the standard deviation of the residuals for each station. o(cal)=calibrated downcast CTD dissolved oxygen; o(btl)=Niskin bottle dissolved oxygen value. Note: values outside vertical axes are plotted on axes limits. Figure 6. CTD dissolved oxygen data coverage for cruise au0703. Figure 7. Nitrate+nitrite versus phosphate data for cruise au0703. Figure 8a and b. au0703 hull mounted ADCP 30 minute ensemble data, for (a) whole cruise, and (b) "on station" data only. Figure 9. au0703 apparent ADCP vertical current shear, calculated from uncorrected (i.e. ship speed included) ADCP velocities. The data are divided into different speed classes, according to ship speed during the 30 minute ensembles. For each speed class, the profile is an average over the entire cruise. Figure 10a and b. au0703 comparison between (a) CTD and underway temperature data (i.e. hull mounted temperature sensor), and (b) CTD and underway salinity data (i.e. Tilbrook's lab 1 SeaBird), including bestfit lines. Note: dls refers to underway data. APPENDIX 1 NOTES ON NUTRIENT ANALYSES Neale Johnston (CSIRO Marine and Atmospheric Research, Floreat, Western Australia) Nutrient samples were run on a Lachat Quickchem series 8000 FIA. Samples were analyzed for silicate, phosphate, nitrate+nitrite, nitrite and ammonia. The following methods were used: • silicate - Quickchem Method 31-114-27-1-D (i.e. in Lachat manual) • orthophosphate - Quickchem Method 31-115-01-1-G • nitrate+nitrite - Quickchem Method 31-107-04-1-A • ammonia - used an automated method based on the manual method in Watson et al. (2005); a Shimadzu RF - 10Axl fluorescence detector was used in the ammonia analysis. • nitrite used the same method as nitrate+nitrite, but with the cadmium reduction column removed. For all analysis, calibration and reference standards were made using nutrient depleted seawater (reference standards from Ocean Scientific International were diluted with nutrient depleted seawater). Calibration standards were run at the start and end of each run. Reference standards were run every 15 samples. The carrier for silicate, phosphate and nitrate+nitrite was artificial seawater (3.6% sodium chloride ). This carrier was taken to contain no silicate, nitrate+nitrite or phosphate, and was checked by observing the baseline voltage reading for each channel each time it was prepared. The carrier for ammonia was a 2ml/l sulfuric acid solution. The carrier solution was subject to contamination from atmospheric-born contamination. This was checked each run by checking the baseline and by running a known ammonia depleted sample against the carrier. Baseline voltages changed slightly each time reagents were changed so where possible reagents and carrier were not changed at the same time. Nutrient depleted seawater was depleted for nitrate+nitrite, phosphate and ammonia, but did often have low silicate values. This was corrected for each run. REFERENCES Roslyn J. Watson, Edward C. V. Butler, Lesley A. Clementson and Kate M. Berry, 2005. Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater. Journal of Environmental Monitoring, Vol. 7, pp 37-42. CCHDO DATA PROCESSING NOTES Date Contact Data Type Summary -------- ---------- ------------- ---------------------------------------- 12/12/07 Rosenberg CTD/BTL/SUM Submitted; Data are public Type: Status: public Name: Rosenberg, Mark Institute: ACECRC Country: Australia Expo:09AR0703 (SAZ-SENSE SURVEY) Line: Date: 2007-01-17 Action: Place Online 10/08/08 Kappa CRUISE ID Changed line from A0703 to SR03 I have changed the line number of this cruise from A0703 to SR03 as recommended by Danie Bartolocci-Kinkaid, based on her assessment of the cruse track. I also added "SR03" and "Southern Repeat" to the list of GROUPS for this cruise, and "A0703" to the list of ALIASES. 10/21/08 Bartolocci CTD/BTL/SUM Reformatting needed Reformatting notes for SR03 (09AR20070117) sent by Mark Rosenberg. BOTTLE: • sent in exchange format. Edited the SECT-ID from SAZ-SENSE to SR03 • Added date/name stamp • changed name from a0703.sea to sr03_09AR20070117_hy1.csv • Bottle file did not open in JOA. SUM: • edited EXPOCODE from 09AR0703_1 to 09AR20070117. • edited SECT_ID from SAZ-SENSE to SR03 • added date/name stamp • renamed file from a0703.sum to sr03_09ar20070117su.txt • format checked file with sumcheck. No errors reported. CTD: • All files contain non-WOCE parameters and their flags which appear to be in raw voltages: FLUORO, PAR, TRANS,TRANSSPIKE, FLUOROUPCAST, PARUPCAST, TRANSUPCAST, TRANSSPIKEUPCAST • changed SECT_ID from SAZ-SENSE to SR03 • changed EXPOCODE from 09AR0703_1 to 09AR20070117 • edited all names to conform to post-WOCE naming convention • zipped all files and named zip file sr03_09ar20070117_ct1.zip • ctd files were not readable by JOA. Placed all files in new cruise directory. Emailed reformatting notes to J. Kappa. 26