CRUISE REPORT: RF12-06

Updated August 2024

Highlights

Cruise Summary Information

Section Designation	RF12-06		
Expedition Designation (ExpoCode)	49UP20120726 (aka: 49RY20120726, 40N)		
Chief Scientist	Hitomi KAMIYA		
Dates	July 26 – August 16, 2012 Leg 1		
	August 21 – September 13, 2012 Leg 2		
Ship	R/V Ryofu Maru		
Ports of Call	Tokyo – Kushiro - Tokyo		
	40° 04"N		
Geographic Boundaries	142° 19"E 170° 05"E		
	32° 6"S		
Stations	75		
Floats and Drifters Deployed	2 profiling floats and 1 drifting ocean data buoy		
Moorings Deployed and Recovered	0		

Contact Information:

Hitomi KAMIYA

Marine Environmental Monitoring and Analysis Center • Marine Division Global Environment and Marine Department • Japan Meteorological Agency (JMA) 1-3-4, Otemachi Chiyoda-ku Tokyo • 100-8122 Japan Tel: +81-3-3212-8341 x5131 • Fax: +81-3-3211-6908 • Email: <u>hkamiya@met.kishou.go.jp</u>

Report assembled by Savannah Lewis

Table of Contents

A. Cruise narrative

B. Underway measurements

- 1. Navigation (to be submitted in the next update)
- 2. Bathymetry (to be submitted in the next update)
- 3. Maritime Meteorological Observations (to be submitted in the next update)
- 4. Thermosalinograph (to be submitted in the next update)

5. Underway Chlorophyll-a

C. Hydrographic Measurement Techniques and Calibration

- 1. CTD/O2 Measurements
- 2. Bottle Salinity
- 3. Bottle Oxygen
- 4. Nutrients
- 5. Phytopigment (Chlorophyll-a and phaeopigmens)
- 6. Total Dissolved Inorganic Carbon (DIC)
- 7. Total Alkalinity (TA)
- <u>8. pH</u>

A. Cruise narrative

1. Highlights

Cruise designation: RF12-06 (40N)

- a. EXPOCODE: 49UP20120726
- b. Chief scientist: Hitomi KAMIYA (<u>hkamiya@met.kishou.go.jp</u>)

Marine Environment Monitoring and Analysis Center

Marine Division

Global Environment and Marine Department

Japan Meteorological Agency (JMA)

1-3-4, Otemachi, Chiyoda-ku, Tokyo 100-8122, JAPAN

Phone: +81-3-3212-8341 Ext. 5131

FAX: +81-3-3211-6908

- c. Ship name: R/V Ryofu Maru
- d. Ports of call: Leg 1: Tokyo Kushiro, Leg 2: Kushiro Tokyo
- e. Cruise dates: Leg 1: 26 July 2012 16 August 2012

Leg 2: 21 August 2012 - 13 September 2012

f. Floats and drifters deployed: two profiling floats and one drifting ocean data buoy

2. Cruise Summary Information

RF12-06 cruise was carried out during the period from July 26 to September 13, 2012. The cruise started from the east of Honshu, Japan, and sailed towards east along 40°N. This line was not observed in the WOCE (World Ocean Circulation Experiment) Hydrographic Programme.

R/V Ryofu Maru departed Tokyo (Japan) on July 26, 2012. Before the observation at the first station, all watch standers were drilled in the method of sample drawing and CTD operations near Izu-Oshima (34°42'N, 139°52'E). The hydrographic cast of CTDO₂ was started at the first station (Stn.1 (40°00'N, 142°19'E; RF4461)) on June 28. Leg 1 consisted of 43 stations from Stn.1 to Stn.43 (40°01'N, 167°40'E; RF4498). She called for Kushiro on August 16, 2012 (Leg 1). She left Kushiro on August 21, 2012 for Tokyo and arrived on September 13, 2012 (Leg 2). Leg 2 consisted of 32 stations from Stn.44 (40°01'N, 167°41'E; RF4504) to Stn.75 (39°59'N, 164°59'E; RF4535). To examine consistency of data, we carried out the observation twice at 40°N, 165°E (Stn.39 and 75), 40°N, 167°40'E (Stn.43 and 44) and 40°N, 169°E (Stn.46 and 47). In order to ensure a controlled spooling of the armored cable, we rewound the cable three times at 37°20'N, 143°35'E (about 7000 m depth), 40°N, 154°20'E (about 5560 m depth) and 41°30'N, 145°35'E (about 6000 m depth). Cruise track and station location are shown in Figure 1.

A total of 75 stations was occupied using a Sea-Bird Electronics (SBE) 36 position carousel equipped with 10-liter Niskin water sample bottles, a CTD system (SBE911plus) equipped with SBE35 deep ocean standards thermometer, JFE Advantech oxygen sensor (RINKO III), Teledyne Benthos altimeter, and Teledyne RD Instruments Lowered Acoustic Doppler Current Profiler (L-ADCP).

At each station, full-depth CTDO₂ (temperature, conductivity (salinity) and dissolved oxygen) profile and up to 36 water samples were taken and analyzed. Water samples were obtained from 10 dbar to approximately 10 m above the bottom. In addition, surface water was sampled by a stainless steel bucket at each station. Sampling layer is designed as so-called staggered mesh as shown in Table 2 (*Swift*, 2010). The bottle depth diagram is shown in Figure 2.

4

Water samples were analyzed for salinity, dissolved oxygen, nutrients, dissolved inorganic carbon (DIC), total alkalinity (TA), pH, CFC-11, CFC-12 and phytopigment (chlorophyll-a and phaeopigments). Underway measurements of partial pressure of carbon dioxide (pCO_2), temperature, salinity, chlorophyll-a, subsurface current, bathymetry and meteorological parameters were conducted along the cruise track.

One drifting ocean data buoy (WMO number : 21636) was deployed at 38°45.947'N, 142°50.188'E on June 28, 2012. Two ARGO floats (PROVOR: nke Instrumentation, France) were deployed at the request of JAMSTEC along the cruise track. The information of deployed floats is listed in Table 1.

Figure 1. Cruise track of RF12-06. Open and closed circles indicate CTD station and X-BT station, respectively.

Figure 2. The bottle depth diagram for RF12-06 cruise.

ARGOS ID	Date and Time of System Reset (UTC)	Date and Time of Deployment (UTC)	Position of deployment	PI	Remark
97946	August 9, 17:53	August 9, 19:00	39-58.531 N, 167-01.768 E	JAMSTEC	Stn. 42 (RF4499)
97912	Sept. 3, 17:40	Sept. 3, 18:59	37-01.347N, 167-14.029E	JAMSTEC	Stn.69 (RF4529)

Table 1. Information of deployed floats in RF12-06.

Bottle count	scheme1	scheme2	scheme3
1	10	10	10
2	50	50	50
3	100	100	100
4	150	150	150
5	200	200	200
6	250	250	250
7	300	330	280
8	400	430	370
9	500	530	470
10	600	630	570
11	700	730	670
12	800	830	770
13	900	930	870
14	1000	1070	970
15	1200	1270	1130
16	1400	1470	1330
17	1600	1670	1530
18	1800	1870	1730
19	2000	2070	1930
20	2200	2270	2130
21	2400	2470	2330
22	2600	2670	2530
23	2800	2870	2730
24	3000	3080	2930
25	3250	3330	3170
26	3500	3580	3420
27	3750	3830	3670
28	4000	4080	3920
29	4250	4330	4170
30	4500	4580	4420
31	4750	4830	4670
32	5000	5080	4920
33	5250	5330	5170
34	5500	5580	5420
35	5750	5830	5670
36	Bottom	Bottom	Bottom

Table 2. The scheme of sampling layer in meters.

Leg	g Station		Position		Leg	Ste	ntion	Pos	ition
	Stn.	RF	Latitude	Longitude		Stn.	RF	Latitude	Longitude
1	1	4461	39-59.97 N	142-19.33 E	1	39	4502	40-00.88 N	164-59.83 E
1	2	4462	40-00.95 N	142-38.12 E	1	40	4501	40-00.75 N	165-40.62 E
1	3	4463	40-00.23 N	142-58.65 E	1	41	4500	40-00.77 N	166-21.27 E
1	4	4464	40-00.53 N	143-29.88 E	1	42	4499	39-59.39 N	167-00.98 E
1	5	4465	40-00.53 N	144-00.60 E	1	43	4498	40-00.77 N	167-39.80 E
1	6	4466	40-01.02 N	144-30.91 E	2	44	4504	40-00.58 N	167-40.70 E
1	7	4467	40-00.48 N	145-01.15 E	2	45	4505	40-00.39 N	168-21.18 E
1	8	4468	40-01.06 N	145-30.62 E	2	46	4506	39-59.86 N	169-00.81 E
1	9	4469	39-59.20 N	146-01.73 E	2	47	4507	39-58.64 N	168-59.30 E
1	10	4470	40-00.66 N	146-30.13 E	2	48	4508	39-57.26 N	169-39.23 E
1	11	4471	40-01.44 N	147-00.81 E	2	49	4509	39-29.27 N	169-59.80 E
1	12	4472	40-00.10 N	147-30.32 E	2	50	4510	38-58.61 N	170-01.62 E
1	13	4473	40-01.75 N	147-59.66 E	2	51	4511	38-30.30 N	169-59.91 E
1	14	4474	40-01.25 N	148-30.73 E	2	52	4512	37-59.41 N	169-58.98 E
1	15	4475	40-00.88 N	149-01.07 E	2	53	4513	37-31.18 N	170-00.47 E
1	16	4476	40-01.46 N	149-40.02 E	2	54	4514	37-01.50 N	169-59.99 E
1	17	4477	40-00.21 N	150-20.61 E	2	55	4515	36-30.70 N	169-57.52 E
1	18	4478	40-01.08 N	151-00.04 E	2	56	4516	35-59.50 N	169-59.26 E
1	19	4479	40-01.82 N	151-40.85 E	2	57	4517	35-29.65 N	169-58.38 E
1	20	4480	40-00.84 N	152-20.37 E	2	58	4518	34-59.50 N	170-00.06 E
1	21	4481	40-00.28 N	153-00.46 E	2	59	4519	34-29.33 N	170-02.11 E
1	22	4482	40-01.68 N	153-41.55 E	2	60	4520	33-59.33 N	169-59.95 E
1	23	4483	40-01.06 N	154-20.87 E	2	61	4521	33-29.35 N	169-59.09 E
1	24	4484	39-58.09 N	155-00.94 E	2	62	4522	33-00.03 N	169-58.53 E
1	25	4485	39-58.26 N	155-40.07 E	2	63	4523	33-59.55 N	169-16.96 E
1	26	4486	39-58.94 N	156-19.75 E	2	64	4524	34-30.31 N	168-56.76 E
1	27	4487	40-00.36 N	157-00.14 E	2	65	4525	35-00.12 N	168-34.54 E
1	28	4488	39-58.88 N	157-40.48 E	2	66	4526	35-29.61 N	168-13.44 E
1	29	4489	39-59.33 N	158-20.16 E	2	67	4527	36-00.30 N	167-51.49 E
1	30	4490	40-00.41 N	158-58.47 E	2	68	4528	36-28.99 N	167-29.88 E
1	31	4491	40-01.09 N	159-38.59 E	2	69	4529	37-00.32 N	167-10.85 E
1	32	4492	40-00.93 N	160-19.04 E	2	70	4530	37-31.04 N	166-47.84 E
1	33	4493	39-59.98 N	160-58.68 E	2	71	4531	37-58.97 N	166-27.71 E
1	34	4494	40-00.82 N	161-38.65 E	2	72	4532	38-29.23 N	166-04.53 E
1	35	4495	40-00.62 N	162-19.37 E	2	73	4533	38-59.03 N	165-41.40 E
1	36	4496	40-00.30 N	162-59.27 E	2	74	4534	39-29.11 N	165-18.94 E
1	37	4497	40-00.96 N	163-38.49 E	2	75	4535	39-59.48 N	164-59.32 E
1	38	4503	40-00.29 N	164-20.07 E					

Table 3. Station data of RF12-06 cruise. The 'RF' column indicates the JMA station identification number.

List of Principal Investigators for all Measurements

The principal investigator (PI) and the person in charge responsible for major parameters measured on the cruise are listed in Table 3.

Item	Principal Investiga	tor (PI) Person in charge on the
ship		
<u>Hydrography</u>		
CTDO ₂ / LADCP	Kazuhiro NEMOTO	Keizo SHUTTA
Salinity	Kazuhiro NEMOTO	Keizo SHUTTA
Dissolve oxygen	Kazuhiro NEMOTO	Chihiro KAWAMURA
Nutrients	Kazuhiro NEMOTO	Takashi MIYAO
Phytopigment	Kazuhiro NEMOTO	Takashi MIYAO
DIC	Kazuhiro NEMOTO	Shu SAITO
Total Alkalinity	Kazuhiro NEMOTO	Shu SAITO
pН	Kazuhiro NEMOTO	Shu SAITO
CFCs	Kazuhiro NEMOTO	Etsuro ONO
Underway		
<u>Meteorology</u>	Kazuhiro NEMOTO	Keizo SHUTTA
Thermo-Salinograph	Kazuhiro NEMOTO	Shu SAITO
pCO ₂	Kazuhiro NEMOTO	Shu SAITO
Chlorophyll-a	Kazuhiro NEMOTO	Takashi MIYAO
ADCP	Kazuhiro NEMOTO	Keizo SHUTTA
Bathymetry	Kazuhiro NEMOTO	Keizo SHUTTA
<u>Floats</u>		
ARGO float	Toshio SUGA	Hitomi KAMIYA

Table 4. List of principal investigator and the person in charge on the ship for RF12-06.

Kazuhiro NEMOTO (k-nemoto@met.kishou.go.jp)

Marine Division, Global Environment and Marine Department, JMA 1-3-4, Otemachi, Chiyoda-ku, Tokyo 100-8122, JAPAN Phone: +81-3-3212-8341 Ext. 5150 FAX: +81-3-3211-6908

Toshio SUGA (sugat@jamstec.go.jp)

Ocean Climate Change Research Program Research Institute for Global Change (RIGC) Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

2-15 Natsushima, Yokosuka, Kanagawa, Japan 237-0061

3. Scientific Program and Methods

In recent years, the global environmental issues such as global warming and climate change have become one of the major socio-economic concerns, and it has become apparent that the ocean plays a key role in the climate system. For the better understanding and assessment of global environmental conditions, continuous monitoring of climate variables, concentrations of greenhouse gases both in the ocean and in the atmosphere. To meet those requirements, JMA has been conducting operational oceanographic observations by research vessels in the western North Pacific on a seasonal basis. RF12-06 cruise is one of these activities. The purposes of this cruise are as follows:

(1) To observe profiles of seawater temperature, salinity, dissolved oxygen, nutrients and carbon parameters, as well as upper ocean current;

(2) To observe concentrations of greenhouse gases both in the ocean and in the atmosphere;

(3) To observe bio-geochemical parameters to study carbon cycle in the ocean.

These activities are expected to contribute to international projects related to global environmental issues such as the World Climate Research Programme (WCRP), IOCCP (International Ocean Carbon Coordination Project) and the Global Atmosphere Watch (GAW).

4. Major Problems and Goals not Achieved

In order to repair and align of the winch system, she stopped after CTD cast of Stn. 45 (RF4505) on August 25 and after CTD cast of Stn.46 (RF4506) on August 26.

5. List of Cruise Participants

The cruise participants of the cruise are listed in Table 5.

Name	Responsibility	Affiliation
Hiroyuki FUJIWARA	Nutrients	GEMD / JMA
Minoru HAMANA (leg 1)	Nutrients	GEMD / JMA
Hiroyuki HATAKEYAMA	CFCs	GEMD / JMA
Sho HIBINO	Dissolved Oxygen	GEMD / JMA
Hitomi KAMIYA	Chief Scientist / Meteorology	GEMD / JMA
Nobumi KATO	CTDO / ADCP / LADCP	GEMD / JMA
Chihiro KAWAMURA	Dissolved Oxygen	GEMD / JMA
Takashi MIYAO (leg 2)	Nutrients	GEMD / JMA
Noriyuki OKUNO	CTDO / ADCP / LADCP	GEMD / JMA
Etsuro ONO	CFCs	GEMD / JMA
Hisashi ONO	Carbon Items	GEMD / JMA
Kazuhiro SAITO	Nutrients	GEMD / JMA
Shu SAITO	Carbon Items	GEMD / JMA
Naoaki SAKAMOTO	Carbon Items	GEMD / JMA
Yasunori SASAKI	CTDO / ADCP / LADCP	GEMD / JMA
Seikou SHIMOJI	Salinity	GEMD / JMA
Hiroki SHIOZURU	Dissolved Oxygen	GEMD / JMA
Keizo SHUTTA	Salinity / Bathymetry	GEMD / JMA
Haruka SUEMATSU	CFCs	GEMD / JMA
Koichi WADA	Salinity	GEMD / JMA

Table 5. List of cruise participants for RF12-06.

GEMD / JMA: Marine Division, Global Environment and Marine Department, JMA

Reference

Swift, J. H. (2010): Reference-quality water sample data: Notes on acquisition, record keeping, and evaluation. *IOCCP Report No.14, ICPO Pub. 134, 2010 ver.1*

1. 5. Underway chlorophyll-a

31 October 2023

(1) Personnel

Chihiro KAWAMURA (GEMD/JMA)

(2) Method

The Continuous Sea Surface Water Monitoring System of fluorescence (Nippon Kaiyo, Japan) automatically had been continuously measured seawater which is pumped from a depth of about 4.5 m below the maximum load line to the laboratory. The flow rate of the surface seawater was controlled by several valves and adjusted to about 0.6 L min⁻¹. The sensor in this system is a fluorometer 10-AU (S/N: 7063, Turner Designs, United States).

(3) Observation log

The chlorophyll-*a* continuous measurements were conducted during the entire cruise; from 26 Jul. to 15 Aug., 2012 in Leg 1, and from 21 Aug. to 10 Sep., 2012 in Leg 2.

(4) Water sampling

Surface seawater was corrected from outlet of water line of the system at nominally 1 day intervals. The seawater sample was measured in the same procedure as hydrographic samples of chlorophyll-*a* (see Chapter C9 "Phytopigments").

(5) Calibration

At the beginning and the end of legs, a raw fluorescence value of sensor was adjusted in sensitivity of the sensor using deionized water and a rhodamine 0.1ppm solution measured.

After the cruise, the fluorescence value was converted to chlorophyll-*a* concentration by programs in the system based on nearby water sampling data (chlorophyll-*a* concentration and distance from location of sensor data).

(6) Data

Underway fluorescence and chlorophyll-*a* data is distributed in JMA format in "49UP20120726_40N_underway_chl.csv". The record structure of the format is as follows;

Column1 DATE: Date (YYYYMMDD) [JST] Column2 TIME: Time (HHMM) [JST] (= UTC + 9h) Column3 LATITUDE: Latitude Column4 LONGITUDE: Longitude Column5 FLUOR: Fluorescence value (RFU) Column6 CHLORA: Chlorophyll-*a* concentration (μ g L⁻¹) Column7 BTLCHL: Chlorophyll-*a* concentration of water sampling (μ g L⁻¹).

C. Hydrographic Measurement Techniques and Calibration

2. CTDO₂ Measurements

Updated 5 March 2020

(1) Personnel

Keizo SHUTTA (GEMD/JMA) Nobumi KATO (GEMD/JMA) Seiko SHIMOJI (GEMD/JMA) Noriyuki OKUNO (GEMD/JMA) Koichi WADA (GEMD/JMA) Yasunori SASAKI (GEMD/JMA)

(2) CTDO₂ measurement system

(Software: SEASAVEwin32 ver7.18)

Deck unit	Serial Number	Station
SBE 11plus (SBE)	0683	RF4461 – 4535
Under water unit	Serial Number	Station
SBE 9plus (SBE)	35251 (Pressure: 0760)	RF4461 - 4535
Temperature	Serial Number	Station
SBE 3plus (SBE)	4923 (primary)	RF4461 – 4535
	4199 (secondary)	RF4461 – 4535
SBE 35 (SBE)	0069	RF4461 - 4535
Conductivity	Serial Number	Station
	3670 (primary)	RF4461 – 4535
SBE 4C (SBE)	2842 (secondary)	RF4461 - 4535
Ритр	Serial Number	Station
Pump	Serial Number 5501 (primary)	<i>Station</i> RF4461 – 4535
Pump SBE 5T (SBE)	Serial Number 5501 (primary) 3887 (secondary)	<i>Station</i> RF4461 – 4535 RF4461 – 4535
Pump SBE 5T (SBE) Oxygen	Serial Number 5501 (primary) 3887 (secondary) Serial Number	<i>Station</i> RF4461 – 4535 RF4461 – 4535 <i>Station</i>
Pump SBE 5T (SBE) Oxygen PINK O III (IEE)	Serial Number 5501 (primary) 3887 (secondary) Serial Number 007 (foil number:160002A)	Station RF4461 – 4535 RF4461 – 4535 Station RF4461 – 4535
Pump SBE 5T (SBE) Oxygen RINKO III (JFE)	Serial Number 5501 (primary) 3887 (secondary) Serial Number 007 (foil number:160002A) 008 (foil numner:160003A)	Station RF4461 - 4535 RF4461 - 4535 Station RF4461 - 4535 RF4461 - 4535
Pump SBE 5T (SBE) Oxygen RINKO III (JFE) Water sampler (36 position)	Serial Number 5501 (primary) 3887 (secondary) Serial Number 007 (foil number:160002A) 008 (foil numner:160003A) Serial Number	Station RF4461 - 4535 RF4461 - 4535 Station RF4461 - 4535 RF4461 - 4535 RF4461 - 4535 Station
Pump SBE 5T (SBE) Oxygen RINKO III (JFE) Water sampler (36 position) SBE 32 (SBE)	Serial Number 5501 (primary) 3887 (secondary) Serial Number 007 (foil number:160002A) 008 (foil numner:160003A) Serial Number 0734	Station RF4461 – 4535 RF4461 – 4535 Station RF4461 – 4535 RF4461 – 4535 RF4461 – 4535 Station RF4461 – 4535 RF4461 – 4535
Pump SBE 5T (SBE) Oxygen RINKO III (JFE) Water sampler (36 position) SBE 32 (SBE) Altimeter	Serial Number 5501 (primary) 3887 (secondary) Serial Number 007 (foil number:160002A) 008 (foil numner:160003A) Serial Number 0734 Serial Number	Station RF4461 – 4535 RF4461 – 4535 Station RF4461 – 4535 RF4461 – 4535 Station RF4461 – 4535 Station RF4461 – 4535 Station RF4461 – 4535
Pump SBE 5T (SBE) Oxygen RINKO III (JFE) Water sampler (36 position) SBE 32 (SBE) Altimeter PSA-916D (TB)	Serial Number 5501 (primary) 3887 (secondary) Serial Number 007 (foil number:160002A) 008 (foil numner:160003A) Serial Number 0734 Serial Number 43854	Station RF4461 – 4535 RF4461 – 4535 Station RF4461 – 4535 RF4461 – 4535 Station RF4461 – 4535 Station RF4461 – 4535 Station RF4461 – 4535 Station RF4461 – 4535
Pump SBE 5T (SBE) Oxygen RINKO III (JFE) Water sampler (36 position) SBE 32 (SBE) Altimeter PSA-916D (TB) Water Sampling Bottle	Serial Number 5501 (primary) 3887 (secondary) Serial Number 007 (foil number:160002A) 008 (foil numner:160003A) Serial Number 0734 Serial Number 43854	Station RF4461 – 4535 RF4461 – 4535 Station RF4461 – 4535 RF4461 – 4535 Station RF4461 – 4535 Station

SBE: Sea- Bird Electronics, Inc., USA TB: Teledyne Benthos, Inc., USA JFE: JFE Advantech Co., Ltd., Japan GO: General Oceanics, Inc., USA

(3) Pre-cruise calibration

(3.1) Pressure

S/N 0760, 25 June 2012

C_{I}	=	-4.959020e+004	t_{I}	=	3.006343e+001
c_2	=	5.955454e-001	t_2	=	-1.267270e-004
C3	=	1.521070e-002	t_3	=	3.974510e-006
d_1	=	3.670600e-002	t_4	=	3.613180e-009
d_2	=	0.000000e+000	t_5	=	0.000000e+000

Formula:

$$c = c_1 + c_2 \times U + c_3 \times U^2$$

$$d = d_1 + d_2 \times U$$

$$t_0 = t_1 + t_2 \times U + t_3 \times U^2 + t_4 \times U^3 + t_5 \times U^4$$

 $U(degrees \ Celsius) = M \times (12$ -bit pressure temperature compensation word) + B

U: temperature in degrees Celsius

S/N 0760 coefficients in SEASOFT (configuration sheet dated on 25 June 2012)

M = 1.28452e-002, B = -9.05575e+000

Finally, pressure is computed as

$$P(psi) = c \times (1 - t_0^2/t^2) \times \left\{ 1 - d \times (1 - t_0^2/t^2) \right\}$$

t: pressure period (µsec)

The drift–corrected pressure is computed as

Drift corrected pressure(dbar) = $slope \times (computed \ pressure in \ dbar) + offset$ Slope = 0.99985, Offset = -2.1180

(3.2) Temperature (ITS-90): SBE 3plus

		S/N 4923(prin	1. (nary), 07	June	2012
g	=	4.35306753e-003	j	=	1.77392830e-006
ĥ	=	6.39201272e-004	f_0	=	1000.0
i	=	2.11553579e-005	-		

$$S/N \ 4199(secondary), \ 07 \ June \ 2012$$

$$g = 4.39477018e-003 \qquad j = 2.29541975e-006$$

$$h = 6.50168448e-004 \qquad f_0 = 1000.0$$

$$i = 2.42311649e-005$$

Formula:

$$Temperature(ITS - 90) = \frac{1}{g + h \times \ln(f_0/f) + i \times \ln^2(f_0/f) + j \times \ln^3(f_0/f)} - 273.15$$

f : Instrument freq.[Hz]

(3.3) Deep Ocean Standards Thermometer Temperature (ITS-90): SBE 35

S/N 0069, 23 Oct. 2006							
a_0	=	4.96812728e-003	a_3	=	-1.14827915e-005		
a_1	=	-1.39341438e-003	a_4	=	2.44200422e-007		
a_2	=	2.06596098e-004					

Formula:

Linearized temperature (ITS-90) = $1/\{a_0 + a_1 \times \ln(n) + a_2 \times \ln^2(n) + a_3 \times \ln^3(n) + a_4 \times \ln^4(n)\}$ 273.15

n: instrument output

The slow time drift of the SBE 35

S/N 0069, 11 Sep. 2011 (2nd step: fixed point calibration) Slope = 1.000003, Offset = -0.000378

Formula:

 $Temperature(ITS-90) = slope \times (Linearized temperature) + offset$

(3.4) Conductivity: SBE 4C

	S/N 3670(primary), 07 June 2012							
g	=	-1.01995535e+001	j	=	2.53978667e-004			
h	=	1.57607652e+000	CP_{cor}	=	-9.5700e-008			
i	=	-2.02177497e-003	CT_{cor}	=	3.2500e-006			

S/N 28	42(secon	dary) 07	hine	2012
0/11 20	τ_2 (second	<i>iury)</i> , 07	June	2012

		(27.		
g	=	-1.01277455e+001	j	=	1.95371413e-005
h	=	1.38819272e+000	CP_{cor}	=	-9.5700e-008
i	=	6.13968402e-004	CT_{cor}	=	3.2500e-006

Conductivity of a fluid in the cell is expressed as:

$$C(S/m) = \left(g + h \times f^2 + i \times f^3 + j \times f^4\right) / \left\{10 \times \left(1 + CT_{cor} \times t + CP_{cor} \times p\right)\right\}$$

f: instrument frequency (kHz)*t*: water temperature (degrees Celsius)*p*: water pressure (dbar).

(3.5) Oxygen (RINKO III)

RINKO III (JFE Advantech Co., Ltd., Japan) is based on the ability of selected substance to act as dynamic fluorescence quenchers. RINKO III model is designed to use with a CTD system which accept an auxiliary analog sensor, and is designed to operate down to 7000 m.

RINKOIII output is expressed in voltage from 0 to 5 V.

(4) Data correction and Post-cruise calibration

(4.1) Temporal change of deck pressure and Post-cruise calibration

The drift-corrected pressure of post-cruise is computed as

 $Drift corrected pressure(dbar) = slope \times (computed pressure in dbar) + offset$

S/N 0760, 17 Oct. 2012

Figure C.1.1. Time series of the CTD deck pressure. Red line indicates atmospheric pressure anomaly. Blue line and dots indicate pre-cast deck pressure and average.

(4.2) Temperature sensor (SBE 3plus)

The practical corrections for CTD temperature data can be made by using a SBE 35, correcting the SBE 3plus to agree with the SBE 35 (*McTaggart et al., 2010*; *Uchida et al., 2007*).

CTD temperature is corrected as

Corrected temperature = $T - (c_0 + c_1 \times P + c_2 \times P^2)$

T: the CTD temperature (degrees Celsius), P: pressure (dbar) and c_0 , c_1 , c_2 : coefficients

Table C.1.1. Temperature correction summary (Pressure \geq 2000dbar). (Bold : selected sensor)

S/N	Num	$c_0(K)$	c1(K/dbar)	$C_2(K/dbar^2)$	Stations
4923	1116	5.7355493e-4	1.3373866e-7	0.0000000e+0	RF4461 – 4535
4199	1115	1.6317968e-3	-3.2009900e-7	7.1930323e-10	RF4461 - 4535

Table C.1.2. Temperature correction summary for S/N 4923.

	Pressure < 2000dbar			$Pressure \ge 2000 dbar$				
Stations	Num	Average	Std	Num	Average	Std		
		(K)	(K)		(K)	(K)		
RF4461 - 4503	760	0.0008	0.0315	596	0.0000	0.0001		
RF4504 - 4535	576	0.0000	0.0094	520	0.0000	0.0001		

Table C.1.3. Temperature correction summary for S/N 4199.

	Pressure < 2000dbar			Pressure \geq 2000dbar			
Stations	Num	Average	Std	Num	Average	Std	
		(K)	(K)		(K)	(K)	
RF4461 - 4503	760	0.0003	0.0145	597	0.0000	0.0002	
RF4504 - 4535	576	0.0001	0.0078	518	0.0000	0.0002	

Figure C.1.2. Difference between the CTD temperature (S/N 4923) and the Deep Ocean Standards thermometer (SBE 35) at RF12-06. Blue and red dots indicate before and after the correction using SBE 35 data respectively. Lower two panels show histogram of the difference after correction.

Post-cruise sensor calibration for the SBE 3plus

		S/N 4923(prim	ary), 04	Oct.	2012
g	=	4.35315593e-003	j	=	1.80068115e-006
ĥ	=	6.39388379e-004	fo	=	1000.0
i	=	2.12796459e-005			

 $S/N \ 4199 (secondary), \ 05 \ Oct. \ 2012$ $g = 4.39449032 e -003 \qquad j = 2.19010408 e -006$ $h = 6.49542198 e -004 \qquad f_0 = 1000.0$ i = 2.37799205 e -005

Formula:

$$Temperature(ITS - 90) = \frac{1}{g + h \times \ln(f_0/f) + i \times \ln^2(f_0/f) + j \times \ln^3(f_0/f)} - 273.15$$

f: Instrument freq.[Hz]

Post-cruise sensor calibration for the SBE 35

S/N 0069, 12 Oct. 2012 (2nd step: fixed point calibration) Slope = 1.000002, Offset = 0.000498

Formula:

 $Temperature(ITS-90) = slope \times (Linearized temperature) + offset$

(4.3) Conductivity sensor (SBE 4C)

The practical corrections for CTD conductivity data can be made by using a bottle salinity data, correcting the SBE 4C to agree with measured conductivity (*McTaggart et al., 2010*).

CTD conductivity is corrected

Corrected Conductivity =
$$C - (\sum_{i=0}^{I} c_i \times C^i + \sum_{j=1}^{J} p_j \times P^j)$$

C: CTD conductivity, c_i and p_j : calibration coefficients

i, *j*: determined by referring to AIC (*Akaike*, 1974). According to *McTaggart et al.* (2010), maximum of I and J are 2.

Table C.1.4. Conductivity correction coefficient summary. (Bold : selected sensor)

S/M	Mum	$c_0(S/m)$	<i>C</i> 1	$c_2(m/S)$	Stations	
5/11	num		$p_1(S/m/dbar)$	$p_2(S/m/dbar^2)$	Siulions	
3670	Q1 0	1.5903e-4	0.0000e+0	0.0000e+0	DE4461 4502	
3070	010		8.4024e-8	-1.2424e-11	кг4401 - 4505	
2(70	(1(2.2746e-4	0.0000e+0	0.0000e+0	DE4504 4525	
3070	010		4.2797e-8	-4.8510e-12	KF4304 - 4333	
2012	Q1 <i>1</i>	1.5063e-4	0.0000e+0	0.0000e+0	DE4461 4502	
2042	014		9.4583e-8	-1.2004e-11	КГ4401 – 4303	
2842	615	2.5754e-4	0.0000e+0	0.0000e+0	DE4504 4525	
	615		2.9613e-8	0.0000e+0	КГ4304 – 4333	

	Pressure < 1900dbar							
Stations	Conductivity				Salinity			
Stations	Num	Average	Std	NI	A	Std		
	Num	(S/m)	(S/m)	Num	Average			
RF4461 - 4503	446	0.0000	0.0004	446	0.0002	0.0041		
RF4504 - 4535	304	0.0000	0.0001	304 0.0000		0.0013		
	Pressure ≥ 1900 dbar							
Stations	Conductivity			Salinity				
Stations	Name	Average	Std	Num	Avanaga	C+J		
	Inuill	(S/m)	(S/m)	Inuill	Average	Sta		
RF4461 - 4503	364	0.0000	0.0001	364	-0.0001	0.0007		
RF4504 - 4535	312	0.0000	0.0000	312	0.0000	0.0006		

Table C.1.5. Conductivity correction and salinity summary for S/N 3670.

Table C.1.6. Conductivity correction and salinity summary for S/N	2842	2.
---	------	----

		Pressure < 1900dbar							
Stations	Conductivity				Salinity				
Stations	Num	Average (S/m)	Std (S/m)	Num	Average	Std			
RF4461 - 4503	446	0.0000	0.0004	446	0.0002	0.0046			
RF4504 - 4535	303	0.0000	0.0001	303	0.0000	0.0013			
		Pressure \geq 1900 dbar							
Stations		Conduct	tivity	Salinity					
Stations	Num	Average (S/m)	Std (S/m)	Num	Average	Std			
RF4461 - 4503	365	0.0000	0.0001	365	-0.0001	0.0007			
RF4504 - 4535	312	0.0000	0.0000	312	0.0000	0.0006			

Figure C.1.3. Difference between the CTD conductivity (S/N 3670) and the bottle conductivity at Leg 1. Blue and red dots indicate before and after the calibration using bottle data respectively. Lower two panels show histogram of the difference before and after calibration.

Figure C.1.4. Difference between the CTD conductivity (S/N 3670) and the bottle conductivity at Leg 2. Blue and red dots indicate before and after the calibration using bottle data respectively. Lower two panels show histogram of the difference before and after calibration.

Post-cruise sensor calibration for the SBE 4C

		S/N 3670(pr	imary), 04 Oc	ct. 20	012
g	=	-1.02008629e+001	j	=	2.65177344e-004
h	=	1.57654876e+000	CP_{cor}	=	-9.5700e-008
i	=	-2.16327892e-003	CT_{cor}	=	3.2500e-006

		S/N 2842(see	condary), 04 C	Oct.	2012
g	=	-1.01282248e+001	j	=	2.44828241e-005
ĥ	=	1.38836986e+000	CP_{cor}	=	-9.5700e-008
i	=	5.53283965e-004	CT_{cor}	=	3.2500e-006

Conductivity of a fluid in the cell is expressed as:

$$C(S/m) = \left(g + h \times f^2 + i \times f^3 + j \times f^4\right) / \left\{10 \times \left(1 + CT_{cor} \times t + CP_{cor} \times p\right)\right\}$$

f: instrument frequency (kHz) *t*: water temperature (degrees Celsius) *p*: water pressure (dbar).

(4.4) Oxygen sensor (RINKO III)

The CTD oxygen is calculated using RINKO III output (voltage) by the Stern-Volmer equation, according to a method by Uchida et al. (2008) and Uchida et al. (2010). The pressure hysteresis for the RINKO III output (voltage) is corrected according to a method by Sea-bird Electornics (2009) and Uchida et al. (2010). The formulas are as follows:

$$P_{0} = 1.0 + c_{4} \times t$$

$$P_{c} = c_{5} + c_{6} \times v + c_{7} \times T + c_{8} \times T \times v$$

$$K_{sv} = c_{1} + c_{2} \times t + c_{3} \times t^{2}$$

$$coef = (1.0 + c_{9} \times P/1000)^{1/3}$$

$$[0_{2}] = 0_{2}^{sat} \times \{(P_{0}/P_{c} - 1.0)/K_{sv} \times coef\}$$

P: pressure (dbar), *t*: potential temperature, *v*: RINKO output voltage (volt)

T: elapsed time of the sensor from the beginning of first station in calculation group in day

O2 sat: dissolved oxygen saturation by Garcia and Gordon (1992) (µmol/kg)

 $[O_2]$: dissolved oxygen concentration (µmol/kg)

 c_1-c_9 : determined by minimizing difference between CTD oxygen and bottle dissolved oxygen by quasinewton method (Shanno, 1970).

C/M	Stationa	C_{I}	c_2	C3	C4	C5
3/1V	Stations	C6	С7	C8	С9	
007	DE4461 4502	1.52760e+0	2.91968e-2	2.86993e-4	1.73464e-3	-2.00194e-1
007	КГ4401 – 4303	3.24160e-1	-4.34986e-4	7.17883e-4	9.34545e-2	
007	DE4504 4525	1.51865e+0	1.78606e-2	2.93187e-4	-6.67446e-4	-1.77500e-1
007	KF4304 – 4535	3.16880e-1	-6.38358e-4	7.30758e-4	1.02766e-1	
000	DE44(1 4502	1.65967e+0	3.24203e-2	1.32570e-4	1.41117e-3	-1.08751e-1
008	KF4401 - 4505	3.02507e-1	-3.75917e-4	5.65218e-4	8.32538e-2	
000	DE4504 4535	1.65702e+0	2.31065e-2	1.89197e-4	-6.51385e-4	-1.00474e-1
008	RF4504 - 4535	2.99167e-1	-2.94419e-4	5.13555e-4	8.74394e-2	

Table C.1.7. Dissolved oxygen correction coefficient summary. (Bold: selected sensor)

Table C.1.8. Dissolved oxygen correction summary for S/N 007.

	Pressure < 950dbar			Pressure \geq 950dbar		
Stations	Num	Average	Std	Num	Average	Std
		(µmol/kg)	(µmol/kg)		(µmol/kg)	(µmol/kg)
RF4461 - 4503	303	-0.38	1.39	436	0.02	0.40
RF4504 - 4535	387	-0.26	1.56	590	0.02	0.40

Table C.1.9. Dissolved oxygen	correction summary f	for S/N	008.
-------------------------------	----------------------	---------	------

	Pressure < 950dbar			Pressure \geq 950dbar			
Stations	Num	Average	Std	Num	Average	Std	
		(µmol/kg)	(µmol/kg)		(µmol/kg)	(µmol/kg)	
RF4461 - 4503	303	-0.16	1.08	436	0.01	0.35	
RF4504 - 4535	387	-0.06	1.35	590	0.01	0.35	

Figure C.1.5. Difference between the CTD oxygen (S/N 008) and bottle dissolved oxygen at Leg 1. Red dots in upper two panels indicate the result of calibration. Lower two panels show histogram of the difference between calibrated oxygen and bottle oxygen.

Figure C.1.6. Difference between the CTD oxygen (S/N 008) and bottle dissolved oxygen at Leg 2. Red dots in upper two panels indicate the result of calibration. Lower two panels show histogram of the difference between calibrated oxygen and bottle oxygen.

(4.5) Results of detection of sea floor by the altimeter (PSA-916D)

The altimeter detected the sea floor at 72 of 75 stations, the average distance of beginning detecting the sea floor was 34.1m, and that of final detection of sea floor was 6.0m. The summary of detection of PSA-916D was shown in Figure C.1.8.

Figure C.1.7. The summary of detection of PSA-916D. The left panel shows the stations of detection, the right panel shows the relationship among PSA-916D, bathymetry and CTD depth. In the left panel, closed and open circles indicate react and no-react stations, respectively.

References

- Akaike, H. (1974): A new look at the statistical model identification. *IEEE Transactions* on Automatic Control, **19**:716–722.
- Garcia, H. E., and L. I. Gordon (1992): Oxygen solubility in seawater: Better fitting equations. *Limnol. Oceanogr.*, 37, 1307–1312.

- McTaggart, K. E., G. C. Johnson, M. C. Johnson, F. M. Delahoyde, and J. H. Swift (2010): The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and guidelines. IOCCP Report No 14, ICPO Publication Series No. 134, version 1, 2010.
- Sea-Bird Electronics (2009): SBE 43 dissolved oxygen (DO) sensor hysteresis corrections, *Application note no. 64-3, 7 pp.*
- Shanno, David F. (1970): Conditioning of quasi-Newton methods for function minimization. *Math. Comput.* 24, 647–656. MR 42 #8905.
- Uchida, H., G. C. Johnson, McTaggart, K. E. (2010): CTD oxygen sensor calibration procedures. In: The GO-SHIP repeat hydrography manual: A Collection of Expert Reports and guidelines. IOCCP Report No 14, ICPO Publication Series No. 134, version 1, 2010.
- Uchida, H., K. Ohyama, S. Ozawa, and M. Fukasawa (2007): In-situ calibration of the Sea-Bird 9plus CTD thermometer. J. Atmos. Oceanic Technol., 24, 1961–1967.
- Uchida, H., T. Kawano, I. Kaneko, and M. Fukasawa (2008): In-situ calibration of optode-based oxygen sensors. J. Atmos. Oceanic Technol., 25, 2271–2281.

3. Bottle Salinity

1 November 2019

(1) Personnel

Keizo SHUTTA (GEMD/JMA) Nobumi KATO (GEMD/JMA) Seiko SHIMOJI (GEMD/JMA) Noriyuki OKUNO (GEMD/JMA) Koichi WADA (GEMD/JMA) Yasunori SASAKI (GEMD/JMA)

(2) Salinity measurement

Salinometer: AUTOSAL 8400B (S/N66286 (Leg 1), S/N67642 (Leg 2); Guildline Instruments Ltd., Canada) Thermometer: Guildline platinum thermometers model 9450 (to monitor an ambient temperature and bath temperature) IAPSO Standard Sea Water: P154 (K15=0.99990)

(3) Sampling and measurement

The measurement system was almost same as *Kawano* (2010). Algorithm for practical salinity scale, 1978 (PSS-78, *UNESCO*, 1981) was employed to convert the conductivity ratios to salinities.

(4) Station occupied

Figure C.2.1. Location of observation stations of bottle salinity. Closed and open circles indicate sampling and no-sampling station, respectively.

Figure C.2.2. Distance-depth distribution of sampling layers of bottle salinity.

25 24.07 24 24.06 Ambient Temprature(degC) 23 24.05 22 24.04 21 24.03 20 24.02 Bath T 19 24.01 18-24.00 10 20 25 30 35 40 45 ò 5 15 ••••• 1.99988 • • • • • • • • • • • • •• •••••• Double Conductivity Ratio • . . . • • • 1.99984 ---------• -----. . . . 1.9998 • . . 1.99976 5 15 30 45 ò 10 20 25 35 40 Days from July 26, 2012

(5.1) Ambient temperature, bath temperature and SSW measurements

(5) Result

Figure C.2.3. The upper panel, red line, black line and blue line indicate time-series of ambient temperature, ambient temperature average and bath temperature during cruise. The lower panel, black dots and red dots indicate raw and corrected time-series of the double conductivity ratio of the standard sea water (P154).
(5.2) Replicate and Duplicate Samples

We took replicate (pair of water samples taken from a single Niskin bottle) and duplicate (pair of water samples taken from different Niskin bottles closed at the same depth) samples of bottle salinity through the cruise. Results of the analyses are summarized in Table C.2.1. Detailed results of them are shown in Figure C.2.4. The calculation of the standard deviation from the difference of sets was based on a procedure (SOP 23) in *DOE* (1994).

Table C.2.1. Summary of replicate and duplicate analyses.

Figure C.2.4. Result of (left) replicate and (right) duplicate analyses during the cruise against (a) station number, (b) pressure and (c) salinity, and (d) histogram of the measurements. Green line indicates the mean of the differences of salinity of replicate/duplicate.

(5.3) Summary of assigned quality control flags

Flag	Definition	Salinity
2	Good	1260
3	Questionable	0
4	Bad (Faulty)	175
6	Replicate measurements	105
Total number of samples		1540

Table C.2.2. Summary of assigned quality control flags

References

- DOE (1994), Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2. *A.G. Dickson and C. Goyet (eds), ORNL/CDIAC-74*.
- Kawano (2010), The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines. *IOCCP Report No. 14, ICPO Publication Series No. 134, Version 1.*
- UNESCO (1981), Tenth report of the Joint Panel on Oceanographic Tables and Standards. UNESCO Tech. Papers in Mar. Sci., 36, 25 pp.

4. Bottle Oxygen

1 November 2019

(1) Personnel

Chihiro KAWAMURA (GEMD/JMA) Sho HIBINO (GEMD/JMA) Hiroki SHIOZURU (GEMD/JMA)

(2) Station occupied

A total of 55 stations (Leg 1: 25, Leg 2: 30) were occupied for dissolved oxygen measurements. Station location and sampling layers of bottle oxygen are shown in Figures C.3.1 and C.3.2, respectively.

Figure C.3.1. Location of observation stations of bottle oxygen. Closed and open circles indicate sampling and no-sampling stations, respectively.

Bottle Depth Diagram along 40N

Figure C.3.2. Distance-depth distribution of sampling layers of bottle oxygen.

(3) Instrument

Detector: DOT-01X (Kimoto Electronic, Japan) Burette: APB-510 (Kyoto Electronic, Japan)

(4) Sampling and measurement

Methods of seawater sampling, measurement, and calculation of dissolved oxygen concentration were based on IOCCP Report (Langdon, 2010). Details of the methods are shown in Appendix A1.

The reagents for the measurement were prepared according to recipes described in Appendix A2. It is noted that standard KIO₃ solutions were prepared gravimetrically using the highest purity standard substance KIO₃ (Lot. No. 92404G, Merck KGaA, Germany). Batch list of prepared standard KIO₃ solutions is shown in Table C.3.1. The normality of the standard potassium iodate solution made by Merck reagent was corrected by the factor as 1.0026 from the result of the inter-laboratory comparison with the standard potassium iodate solution made by National Metrology Institute of Japan reagent (JMA, 2010).

KIO ₃ batch	Concentration and uncertainty (k=2) at 20 °C. Unit is normality (N).	Purpose of use
20120222	0.010120 ± 0.000005	Standardization (main use)
20120404-2	$0.010189 {\pm} 0.000005$	Mutual comparison

Table C.3.1. Batch list of the standard KIO₃ solutions.

(5) Standardization

Concentration of Na₂S₂O₃ titrant was determined with the standard KIO₃ solution "20120222", based on the methods of IOCCP Report (Langdon, 2010). The results of standardization during the cruise are shown in Figure C.3.3. Standard deviation of its concentration at 20 °C determined through standardization was used in calculation of an uncertainty.

Figure C.3.3. Calculated concentration of Na₂S₂O₃ solution at 20 °C in standardization during the cruise. Different colors of plots indicate different batches of Na₂S₂O₃ solution; red (blue, light blue, and green) plots correspond to the left (right) y-axis. Error bars of plots show standard deviation of concentration of Na₂S₂O₃ in the measurement. Thick and dashed lines denote the mean and 2 times of standard deviations for the batch measurements, respectively.

(6) Blank

(6.1) Reagent blank

Blank in oxygen measurement (reagent blank; Vblk, dw) can be represented as follows;

 $V_{blk, dw} = V_{blk, ep} + V_{blk, reg}$ (C3.1) where $V_{blk, ep}$ represents a blank due to differences between the measured end-point and the equivalence point, and $V_{blk, reg}$ a blank associated with oxidants or reductants in the reagent. The reagent blank $V_{blk, dw}$ was determined by the methods described in IOCCP Report (Langdon, 2010). Because we used two sets (set A and B) of pickling reagent-I and -II, the blanks in each set were determined (Figure C.3.4).

Figure C.3.4. Reagent blank (V_{blk}, _{dw}) determination for set A (top) and set B (bottom). Error bars of plots show standard deviation of the measurement. Thick and dashed lines denote the mean and 2 times of standard deviations for the batch measurement, respectively.

(6.2) Other blanks

We also determined another blanks related to oxygen measurement; the blank $V_{blk, reg}$. Details are described in Appendix A3.

(7) Quality Control

(7.1) Replicate and duplicate analyses

We took replicate (pair of water samples taken from a single Niskin bottle) and duplicate (pair of water samples taken from different Niskin bottles closed at the same depth) samples of dissolved oxygen through the cruise. Results of the analyses are summarized in Table C.3.2. Detailed results of them are shown in Figure C.3.5. The calculation of the standard deviation from the difference of sets was based on a procedure (SOP 23) in DOE (1994).

Table C.3.2. Summary of replicate and duplicate analyses.

Measurement	Ave. ± S.D. (µmol kg ⁻¹)
Replicate	0.22±0.21 (N=213)
Duplicate	0.35±0.33 (N=87)

Figure C.3.5. Results of (left) replicate and (right) duplicate analyses during the cruise against (a) station number, (b) pressure and (c) concentration of dissolved oxygen. Green line denotes the average of the measurements. Bottom panels (d) show histogram of the measurements.

(7.2) Mutual comparison between each standard KIO₃ solution

During the cruise, mutual comparison between different lots of standard KIO₃ solution was performed to confirm the accuracy of our oxygen measurement and the bias of a standard KIO₃ solution. A concentration of the standard KIO₃ solution "20120404-2" was determined using Na₂S₂O₃ solution standardized with the KIO₃ solution "20120222", and the difference between measurement value and theoretical one. A good agreement among two standards confirmed that there was no systematic shift in our oxygen measurements during the cruise (Figure C.3.6).

Figure C.3.6. Result of mutual comparison of standard KIO₃ solutions during the cruise. Circles and error bars show mean of the measurement value and its uncertainty (k=2), respectively. Thick and dashed lines in blue denote the mean and 2 times of standard deviations, respectively, for the measurement. Green thin line and light green thick line denote nominal concentration and its uncertainty (k=2) of standard KIO₃ solution "20120404-2".

(7.3) Quality control flag assignment

Quality flag value was assigned to oxygen measurements as shown in Table C.3.3, using the code defined in IOCCP Report No.14 (Swift, 2010).

Flag	Definition Number of samples		
2	Good	1699	
3	Questionable	26	
4	Bad (Faulty)	52	
5	Not reported	0	
6	Replicate measurements	204	
Total number of samples1981			

Table C.3.3. Summary of assigned quality control flags.

(8) Uncertainty

Oxygen measurement involves various uncertainties; determination of glass bottles volume, repeatability and systematic error of burette discharge, repeatability of pickling reagents discharge, determination of reagent blank, standardization of Na₂S₂O₃ solution, and uncertainty of KIO₃ concentration. Considering evaluable uncertainties as above, expanded uncertainty of bottle oxygen concentration (T=20, S=34.5) was estimated as shown in Table C.3.4. However, it is difficult to determine a strict uncertainty for oxygen concentration because there is no reference material for oxygen measurement.

O ₂ conc. (μ mol kg ⁻¹)	Uncertainty (µmol kg ⁻¹)
20	0.35
30	0.36
50	0.39
70	0.42
100	0.49
150	0.62
200	0.76
250	0.92
300	1.07
400	1.40

Table C.3.4 Expanded uncertainty (k=2) of bottle oxygen in the cruise.

Appendix A1. Methods (A1.1) Seawater sampling

Following procedure is based on a determination method in IOCCP Report (Langdon, 2010). Seawater samples were collected from 10-liters Niskin bottles attached the CTD-system and a stainless steel bucket for the surface. Seawater for bottle oxygen measurement was transferred from the Niskin bottle and a stainless steel bucket to a volumetrically calibrated dry glass bottles. At least three times the glass volume water was overflowed. Then, pickling reagent-I 1 mL and reagent-II 1mL were added immediately, and sample temperature was measured using a thermometer. After a stopper was inserted carefully into the glass, it was shaken vigorously to mix the content and to disperse the precipitate finely. After the precipitate has settled at least halfway down the glass, the glass was shaken again. The sample glasses containing pickled samples were stored in a laboratory until they were titrated. To prevent air from entering the glass, deionized water (DW) was added to its neck after sampling.

(A1.2) Sample measurement

At least 15 minutes after the re-shaking, the samples were measured on board. Added 1 mL H₂SO₄ solution and a magnetic stirrer bar into the sample glass, samples were titrated with Na₂S₂O₃ solution whose molarity was determined with KIO₃ solution. During the titration, the absorbance of iodine in the solution was monitored using a detector. Also, temperature of Na₂S₂O₃ solution during the titration was recorded using a thermometer. Dissolved oxygen concentration (µmol kg⁻¹) was calculated from sample temperature at the fixation, CTD salinity, glass volume, and titrated volume of the Na₂S₂O₃ solution, and oxygen in the pickling reagents-I (1 mL) and II (1 mL) (7.6 × 10⁻⁸ mol; Murray *et al.*, 1968).

A2. Reagents recipes

Pickling reagent-I; Manganous chloride solution (3 mol L⁻¹)

- Dissolve 600 g of $MnCl_2 \cdot 4H_2O$ in DW, then dilute the solution with DW to a final volume of 1 L.
- Pickling reagent-II; Sodium hydroxide (8 mol L^{-1}) / sodium iodide solution (4 mol L^{-1}) Dissolve 320 g of NaOH in about 500 mL of DW, allow to cool, then add 600 g NaI and dilute with DW to a final volume of 1 L.

H₂SO₄ solution; Sulfuric acid solution (5 mol L^{-1})

Slowly add 280 mL concentrated H₂SO₄ to roughly 500 mL of DW. After cooling the final volume should be 1 L.

Na₂S₂O₃ solution; Sodium thiosulfate solution (0.04 mol L^{-1})

Dissolve 50 g of Na₂S₂O₃·5H₂O and 0.4 g of Na₂CO₃ in DW, then dilute the solution with DW to a final volume of 5 L.

KIO₃ solution; Potassium iodate solution (0.001667 mol L⁻¹)

Dry high purity KIO₃ for two hours in an oven at 130 °C. After weight out accurately KIO₃, dissolve it in DW in a 5 L flask. Concentration of potassium iodate is determined by a gravimetric method.

A3. Other blanks in oxygen measurement

(A3.1) Blank associated with oxidants or reductants in the reagents

The blank V_{blk, reg}, associated with oxidants or reductants in the reagent, was determined as follows. Using a calibrated pipette, 1 mL of the standard KIO₃ solution and 100 mL of DW were added to two glasses each. Then, 1 mL H₂SO₄ solution, 1 mL of pickling reagent-II and 1 mL reagent-I were added in sequence into the first glass. Next, added two times volume of the reagents (2 mL of H₂SO₄ solution, pickling reagent-II and I each) into the second one. After that, the sample was titrated to the end-point with Na₂S₂O₃ solution. V_{blk, reg} was determined with difference of titrated volume of Na₂S₂O₃ between the first (total reagents volume is 3 mL) and the second (total reagents volume is 6 mL) one, also, experiments for three times and four times volume of them were carried out. The results are shown in Figure C.3.A1.

Figure C.3.A1. Blank (mL) due to redox species other than oxygen in the reagents.

The relation between difference of the titrant volume and the reagents of the volume (V_{reg}) is expressed as follows;

Reference

- Culberson, A.H. (1994) Dissolved oxygen, in WHPO Pub. 91-1 Rev. 1, November 1994, Woods Hole, Mass., USA.
- Culberson, A.H., G. Knapp, M.C. Stalcup, R.T. Williams, and F. Zemlyak (1991) A comparison of methods for the determination of dissolved oxygen in seawater, WHPO Pub. 91-2, August 1991, Woods Hole, Mass., USA.
- DOE (1994), Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2. *A.G. Dickson and C. Goyet (eds), ORNL/CDIAC-74*.

Japan Meteorological Agency (2010), WHP P09 REVISIT CRUISE REPORT.

- Langdon, C. (2010), Determination of dissolved oxygen in seawater by Winkler titration using the amperometric technique, *IOCCP Report No.14, ICPO Pub. 134, 2010* ver.1.
- Murray, C. N., J. P. Riley and T. R. S. Wilson (1968), The solubility of oxygen in Winkler reagents used for the determination of dissolved oxygen. *Deep-Sea Res.* 15, 237–238.
- Swift, J. H. (2010), Reference-quality water sample data: Notes on acquisition, record keeping, and evaluation. *IOCCP Report No.14, ICPO Pub. 134, 2010 ver.1.*

5. Nutrients

Updated 8 July 2020

(1) Personnel

Kazuhiro SAITO (GEMD/JMA) Hiroyuki FUJIWARA (GEMD/JMA) (Leg 1) Minoru HAMANA (GEMD/JMA) (Leg 2) Takashi MIYAO (GEMD/JMA)

(2) Station occupied

A total of 74 stations (Leg 1: 43, Leg 2: 31) were occupied for nutrients measurements. Station location and sampling layers of nutrients are shown in Figures C.4.1 and C.4.2.

Figure C.4.1. Location of observation stations of nutrients. Closed and open circles indicate sampling and no-sampling stations, respectively.

Bottle Depth Diagram along 40N

Figure C.4.2. Distance-depth distributions of sampling layers of nutrients.

(3) Instrument

The nutrients analysis was carried out on 4-channel Auto Analyzer III (BL TEC K.K., Japan) for 4 parameters; nitrate+nitrite, nitrite, phosphate, and silicate.

(4) Sampling and measurement

Methods of seawater sampling, measurement, and data processing of nutrient concentration were described in Appendixes A1, A2, and A3, respectively. The reagents for the measurement were prepared according to recipes shown in Appendix A4.

(5) Nutrients standards

(5.1) Volumetric laboratory ware of in-house standards

All volumetric wares were gravimetrically calibrated. The weights obtained in the calibration weighing were corrected for the density of water and for air buoyancy. Polymethylpenten volumetric flasks were gravimetrically calibrated at the temperature of use within 4–6 °C. All pipettes have nominal calibration tolerances of 0.1 % or better. These were gravimetrically calibrated in order to verify and improve upon this nominal tolerance.

(5.2) Reagents of standard

The batches of the reagents used for standard are listed in Table C.4.1.

	Name	CAS No	Lot. No	Industries
Nitrate	potassium nitrate 99.995	7757-79-1	B0158765	Merck KGaA
	suprapur®			
Nitrite	sodium nitrite GR for analysis	7632-00-0	A0113649	Merck KGaA
	ACS, Reag. Ph Eur			
Phosphate	potassium dihydrogen phosphate	7778-77-0	B0442908	Merck KGaA
	anhydrous 99.995 suprapur®			
Silicate	Silicon standard solution 1000	-	HC122701**	Merck KGaA
	mg/l Si*		HC247279***	
		*	Traceable to NIS	ST-SRM3150
		**		· DE4510

Table C.4.1. List of reagents of standard used in the cruise.

** Used before Station RF4519

*** Used after Station RF4520

(5.3) Low nutrient seawater (LNSW)

Surface water with sufficiently low nutrient concentration was taken and filtered using $10 \,\mu m$ pore size membrane filter in our previous cruise. This water was stored in 20 liter flexible container with paper box.

(5.4) In-house standard solutions

Nutrient concentrations for A, B and C standards were set as shown in Table C.4.2. A and B standards were prepared with deionized water (DW). C standard (full scale of working standard) was mixture of B-1 and B-2 standards, and was prepared with LNSW. C-1 standard, whose concentrations of nutrient were nearly zero, was prepared as LNSW slightly added with DW to be equal with mixing ratio of LNSW and DW in C standard. The C-2 to -5 standards were prepared with mixture of C-1 and C standards in stages as 1/4, 2/4, 3/4, and 4/4 (i.e., pure "C standard") concentration for full scale, respectively. The actual concentration of nutrients in each standard was calculated based on the solution temperature and factors of volumetric laboratory wares calibrated prior to use. Nominal zero concentration of nutrient was determined in measurement of DW after refraction error correction. The calibration curves for each run were obtained using 5 levels of C-1 to -5 standards. These standard solutions were periodically renewed as shown in Table C.4.3.

1			
	А	В	С
Nitrate	27480	550	43.6
Nitrite	12480	250	2.0
Phosphate	2120	42.3	3.38
Silicate	35600 35680	2300 2310	183.9 184.2

Table C.4.2. Nominal concentrations of nutrients for A, B, and C standards at 20 °C. Unit is μ mol L⁻¹.

Table C.4.3. Schedule of renewal of	in-house standards.
-------------------------------------	---------------------

Standard	Renewal	
A-1 std. (NO ₃)	No renewal	
A-2 std. (NO ₂)	No renewal	
A-3 std. (PO4)	No renewal	
A-4 std. (Si)	Commercial prepared solution	
B-1 std. (mixture of A-1, A-3, and A-4 stds.)	Maximum 8 days	
B-2 std. (diluted A-2 std.)	Maximum 15 days	
C-std. (mixture of B-1 and B-2 stds.)	Every measurement	
C-1 to -5 stds.	Every measurement	

(6) Certified reference material

Certified reference material (CRM) and reference material (RM) for nutrients in seawater, which were prepared by the General Environmental Technos (KANSO Technos, Japan), was used every analysis at each hydrographic station. Using CRM and RMs for the analysis of seawater, stable comparability and uncertainty of our data are secured. CRM and RMs used in the cruise are shown in Table C.4.4.

Table C.4.4. Certified concentration and uncertainty (k=2) of RMs. Unit is μ mol kg ⁻¹ .				
Nitrate Phosphate Silicate				
RM-BS	$0.058{\pm}0.028^{*}$	$0.054{\pm}0.010$	2.411±0.236	
RM-BT	18.15±0.24	1.296 ± 0.027	42.02 ± 0.64	
CRM-BV	35.36±0.35	2.498 ± 0.023	102.2 ± 1.1	
RM-BF**	41.39±0.05	2.809 ± 0.06	150.61±0.14	

* Reference value because concentration is under limit of quantitation

**Assigned by Aoyama et al. (2010)

It is noted that nutrient data in our report are calibrated not on CRM and RM but on in-house standard solutions. Therefore, to calculate data based on CRM and RM, it is necessary that values of nutrient concentration in our report are correlated with CRM and RM values measured in the same analysis run. The result of CRM and RM measurements is attached as 49UP20120726_40N_nut_RM_measurement.csv.

(7) Quality Control

(7.1) Replicate and duplicate analyses

We took replicate (pair of water samples taken from a single Niskin bottle) and duplicate (pair of water samples taken from different Niskin bottles closed at the same depth) samples of nutrient through the cruise. Results of the analyses are summarized in Table C.4.5. Detailed results of them are shown in Figures C.4.3–C.4.5. The calculation of the standard deviation from the difference of sets was based on a procedure (SOP 23) in *DOE* (1994).

Table C.4.5. Average and standard deviation of difference of replicate and duplicate	ate
analyses through the cruise. Unit is μ mol kg ⁻¹ .	

Measurement	Nitrate+nitrite	Phosphate	Silicate		
Replicate	$0.063 {\pm} 0.064$	0.003 ± 0.003	$0.104{\pm}0.098$		
	(N=275)	(N=282)	(N=287)		
Duplicate	0.092 ± 0.086	$0.004{\pm}0.005$	0.178 ± 0.193		
	(N=130)	(N=130)	(N=129)		

Figure C.4.3. Result of (left) replicate and (right) duplicate analyses of nitrate+nitrite through the cruise versus (a) station number, (b) sampling pressure, (c) concentration, and (d) histogram of the measurements. Green line indicates the mean of the differences of concentration of replicate/duplicate analyses.

Figure C.4.4. Same as Figure C.4.3 but for phosphate.

Figure C.4.5. Same as Figure C.4.3 but for silicate.

(7.2) Measurement of CRMs

CRM and RM measurements during the cruise are summarized in Table C.4.6, whose concentrations were assigned with in-house standard solutions. The measured concentrations of CRM-BV through the cruise are shown in Figures C.4.6–C.4.9.

Table C.4.6. Summary of (upper) mean concentration and its standard deviation (unit: μ mol kg⁻¹), (middle) coefficient of variation (%), and (lower) total number of CRM and RMs measurements through the cruise.

	Nitrate+nitrite	Nitrite	Phosphate	Silicate
	0.073 ± 0.037	$0.013 {\pm} 0.003$	0.029 ± 0.006	$1.78{\pm}0.10$
RM-BS	50.86%	22.42%	19.18%	5.86%
	(N=147)	(N=144)	(N=147)	(N=147)
RM-BT	18.63 ± 0.07	$0.046 {\pm} 0.028$	1.29 ± 0.01	42.00 ± 0.14
	0.39%	6.04%	0.76%	0.34%
	(N=112)	(N=112)	(N=112)	(N=112)
CRM-BV	35.39±0.10	0.040 ± 0.003	$2.50{\pm}0.01$	102.26 ± 0.27
	0.28%	6.65%	0.45%	0.26%
	(N=147)	(N=145)	(N=147)	(N=147)
RM-BF	41.38±0.11	$0.017 {\pm} 0.003$	2.79 ± 0.01	153.73±0.37
	0.26%	16.02%	0.37%	0.24%
	(N=112)	(N=112)	(N=112)	(N=112)

Figure C.4.6. Time-series of measured concentration of nitrate+nitrite of CRM-BV through the cruise. Closed and open circles indicate the newly and previously opened bottle, respectively. Thick and dashed lines denote the mean and 2 times of standard deviations of the measurements through the cruise, respectively.

Figure C.4.7. Same as Figure C.4.6 but for nitrite.

Figure C.4.8. Same as Figure C.4.6 but for phosphate.

Figure C.4.9. Same as Figure C.4.6 but for silicate.

(7.3) Precision of analysis in a run

To monitor precision of analysis, the same samples were repeatedly measured in a sample array in a run. For this, C-5 standard solutions were randomly arrayed in every 2–10 samples as "check standard" (the number of the standard is about 8–9) in the run. The precision was estimated as coefficient of variation of the measurements. The results are summarized in Table C.4.7. The time series are shown in Figures C.4.10–C.4.13.

Figure C.4.10. Time-series of coefficient of variation of "check standard" measurement of nitrate+nitrite through the cruise. Thick and dashed lines denote the mean and 2 times of standard deviations of the measurements through the cruise, respectively.

Figure C.4.11. Same as Figure C.4.10 but for nitrite.

Figure C.4.12. Same as Figure C.4.10 but for phosphate.

Figure C.4.13. Same as Figure C.4.10 but for silicate.

			-	
	Nitrate+nitrite	Nitrite	Phosphate	Silicate
Median	0.19%	0.08%	0.13%	0.14%
Mean	0.20%	0.08%	0.13%	0.14%
Minimum	0.04%	0.02%	0.02%	0.04%
Maximum	0.39%	0.22%	0.25%	0.33%
Number	74	74	74	74

Table C.4.7. Summary of precisions during the cruise.

(7.4) Limit of detection/quantitation of measurement

Silicate

Limit of detection (LOD) and quantitation (LOQ) of nutrient measurement were estimated from standard deviation (σ) of repeated measurements of nutrients concentration in C-1 standard as 3σ and 10σ , respectively. Summary of LOD and LOQ are shown in Table C.4.8.

measurement in the cruise. Unit is μ mol kg ⁻¹ .			
	LOD	LOQ	
Nitrate+nitrite	0.045	0.150	
Nitrite	0.002	0.005	
Phosphate	0.012	0.041	

0.130

0.435

Table C.4.8. Limit of detection (LOD) and quantitation (LOQ) of nutrient

(7.5) Quality control flag assignment

Quality flag value was assigned to nutriment measurements as shown in Table C.4.9, using the code defined in IOCCP Report No.14 (Swift, 2010).

Flag	Definition	Nitrate+nitrite	Nitrite	Phosphate	Silicate
2	Good	2310	2331	2315	2325
3	Questionable	31	0	19	2
4	Bad (Faulty)	32	30	32	34
5	Not reported	4	6	4	4
6	Replicate measurements	275	285	282	287
Т	otal number of samples	2652	2652	2652	2652

Table C.4.9. Summary of assigned quality control flags.

(8) Uncertainty

(8.1) Uncertainty associated with concentration level: U_c

Generally, an uncertainty of nutrient measurement is expressed as a function of its concentration level which reflects that some components of uncertainty are relatively large in low concentration. Empirically, the uncertainty associated with concentrations level (U_c) can be expressed as follows;

$$U_c(\%) = a + b \cdot (1/C_x) + c \cdot (1/C_x)^2, \tag{C4.1}$$

where C_x is the concentration of sample for parameter X.

Using the coefficients of variation of the CRM measurements throughout the cruise, uncertainty associated with concentrations of nitrate+nitrite, phosphate, and silicate were determined as follows:

$U_{c\text{-no3}}$ (%) = 0.158 + 4.299 × (1/ C_n) - 0.043 × (1/ C_n) ²	(C4.2)
U_{c-po4} (%) = 0.080 + 0.886 × (1/ C_p) - 0.0097 × (1/ C_p) ²	(C4.3)

$$U_{c-sil} (\%) = 0.203 + 5.573 \times (1/C_s) + 8.073 \times (1/C_s)^2,$$
(C4.4)

where C_n , C_p , and C_s represent concentrations of nitrate+nitrite, phosphate, and silicate, respectively, in µmol kg⁻¹. Figures C.4.14–C.4.16 show the calculated uncertainty graphically.

Figure C.4.14. Uncertainty of nitrate+nitrite associated with concentration level.

Figure C.4.15. Same as Figure C.4.14 but for phosphate.

Figure C.4.16. Same as Figure C.4.14 but for silicate.

(8.2) Uncertainty of analysis between runs: U_s

Uncertainty of analysis among runs (U_s) was evaluated based on the coefficient of variation of measured concentrations of CRM-BV with high concentration among the CRM lots throughout the cruise, as shown in subsection (7.2). The reason for using the CRM lot BV to state \underline{U}_s is to exclude the effect of uncertainty associated with lower concentration described previously. As is clear from the definition of U_c , U_s is equal to U_c at nutrients concentrations of lot BV. It is important to note that U_s includes all of uncertainties during the measurements throughout stations, namely uncertainties of concentrations of in-house standard solutions prepared for each run, uncertainties of slopes and intercepts of the calibration curve in each run if first order calibration curve applied, precision of measurement in a run (U_a), and between-bottle homogeneity of the CRM.

(8.3) Uncertainty of analysis in a run: U_a

Uncertainty of analysis in a run (U_a) was evaluated based on the coefficient of variation of repeated measurements of the "check standard" solution, as shown in subsection (7.3). The U_a reflects the conditions associated with chemistry of colorimetric measurement of nutrients, and stability of electronic and optical parts of the instrument throughout a run. Under a wellcontrolled condition of the measurements, U_a might show Poisson distribution with a mean as shown in Figures C.4.10–C.4.13 and Table C.4.7 and treated as a precision of measurement. U_a is a part of U_c at the concentration as stated in a previous section for U_c . However, U_a may show larger value which was not expected from Poisson distribution of U_a due to the malfunction of the instruments, larger ambient temperature change, human errors in handling samples and chemistries and contaminations of samples in a run. In the cruise, we observed that U_a of our measurement was usually small and well-controlled in most runs as shown in Figures C.4.10–C.4.13 and Table C.4.7. However, in a few runs, U_a showed high values which were over the mean \pm twice the standard deviations of U_a , suggesting that the measurement system might have some problems.

(8.4) Uncertainty of CRM concentration: Ur

In the certification of CRM, the uncertainty of CRM concentrations (U_r) was stated by the manufacturer (Table C.4.4) as expanded uncertainty at k=2. This expanded uncertainty reflects the uncertainty of the Japan Calibration Service System (JCSS) solutions, characterization in assignment, between-bottle homogeneity, and long term stability. We have ensured comparability between cruises by ensuring that at least two lots of CRMs overlap between cruises. In comparison of nutrient concentrations between cruises using KANSO CRMs in an organization, it was not necessary to include U_r in the conclusive uncertainty of concentration of measured samples because comparability of measurements was ensured in an organization as stated previously.

(8.5) Combined relative standard uncertainty: U

To determine the conclusive uncertainty of nutrient measurements of samples (U), we use two functions depending on U_a value acquired at each run as follows:

When U_a was small and measurement was well-controlled condition, the conclusive uncertainty of nutrient measurements of samples, U, might be as below:

$$U = U_c. \tag{C4.5}$$

When U_a was relative large and the measurement might have some problems, the conclusive uncertainty of nutrient measurements of samples, U, can be expanded as below:

$$U = \sqrt{U_c^2 + U_a^2}.$$
 (C4.6)

When U_a was relative large and the measurement might have some problems, the equation of U is defined as to include U_a to evaluate U, although U_a partly overlaps with U_c . It means that the equation overestimates the conclusive uncertainty of samples. On the other hand, for low concentration there is a possibility that the equation not only overestimates but also underestimates the conclusive uncertainty because the functional shape of U_c in lower concentration might not be the same and cannot be verified. However, we believe that the applying the above function might be better way to evaluate the conclusive uncertainty of nutrient measurements of samples because we can do realistic evaluation of uncertainties of nutrient concentrations of samples which were obtained under relatively unstable conditions, larger U_a as well as the evaluation of them under normal and good conditions of measurements of nutrients.

Appendix

A1. Seawater sampling

Seawater samples were collected from 10-liters Niskin bottle attached CTD-system and a stainless steel bucket for the surface. Samples were drawn into 10 mL polymethylpenten vials using sample drawing tubes. The vials were rinsed three times before water filling and were capped immediately after the drawing.

No transfer was made and the vials were set on an auto sampler tray directly. Samples were analyzed immediately after collection.

A2. Measurement

(A2.1) General

Auto Analyzer III is based on Continuous Flow Analysis method and consists of sampler, pump, manifolds, and colorimeters. As a baseline, we used artificial seawater (ASW).

(A2.2) Nitrate+nitrite and nitrite

Nitrate+nitrite and nitrite were analyzed according to the modification method of Armstrong (1967). The sample nitrate was reduced to nitrite in a glass tube which was filled with granular cadmium coated with copper. The sample stream with its equivalent nitrite was treated with an acidic, sulfanilamide reagent and the nitrite forms nitrous acid which reacts with the sulfanilamide to produce a diazonium ion. N-1-naphthylethylene-diamine was added to the sample stream then coupled with the diazonium ion to produce a red, azo dye. With reduction of the nitrate to nitrite, sum of nitrate and nitrite were measured; without reduction, only nitrite was measured. Thus, for the nitrite analysis, no reduction was performed and the alkaline buffer was not necessary. The flow diagrams for each parameter are shown in Figures C.4.A1 and C.4.A2. If the reduction efficiency of the cadmium column became lower than 95 %, the column was replaced.

Figure C.4.A1. Nitrate+nitrite (1ch.) flow diagram.

(A2.3) Phosphate

The phosphate analysis was a modification of the procedure of Murphy and Riley (1962). Molybdic acid was added to the seawater sample to form phosphomolybdic acid which was in turn reduced to phosphomolybdous acid using L-ascorbic acid as the reductant. The flow diagram for phosphate is shown in Figure C.4.A3.

Figure C.4.A3. Phosphate (3ch.) flow diagram.

(A2.4) Silicate

The silicate was analyzed according to the modification method of Grasshoff *et al.* (1983), wherein silicomolybdic acid was first formed from the silicate in the sample and added molybdic acid, then the silicomolybdic acid was reduced to silicomolybdous acid, or "molybdenum blue," using L-ascorbic acid as the reductant. The flow diagram for silicate is shown in Figure C.4.A4.

1.5 mm (I.D.) × 15 mm flow cell 820 nm

Figure C.4.A4. Silicate (4ch.) flow diagram.

A3. Data processing

Raw data from Auto Analyzer III were recorded at 1-second interval and were treated as follows;

- a. Check the shape of each peak and position of peak values taken, and then change the positions of peak values taken if necessary.
- b. Baseline correction was done basically using liner regression.
- c. Reagent blank correction was done basically using liner regression.
- d. Carryover correction was applied to peak heights of each sample.
- e. Sensitivity correction was applied to peak heights of each sample.
- f. Refraction error correction was applied to peak heights of each seawater sample.
- g. Calibration curves to get nutrients concentration were assumed quadratic expression.
- h. Concentrations were converted from μ mol L⁻¹ to μ mol kg⁻¹ using seawater density.

A4. Reagents recipes

(A4.1) Nitrate+nitrite

Ammonium chloride (buffer), 0.7 μ mol L⁻¹ (0.04 % w/v);

Dissolve 190 g ammonium chloride, NH₄Cl, in ca. 5 L of DW, add about 5 mL ammonia(aq) to adjust pH of 8.2–8.5.

Sulfanilamide, 0.06 μ mol L⁻¹ (1 % w/v);

Dissolve 5 g sulfanilamide, 4-NH₂C₆H₄SO₃H, in 430 mL DW, add 70 mL concentrated HCl. After mixing, add 1 mL Brij-35 (22 % w/w).

N-1-naphtylethylene-diamine dihydrochloride (NEDA), 0.004 μ mol L⁻¹ (0.1 % w/v); Dissolve 0.5 g NEDA, C₁₀H₇NH₂CH₂CH₂NH₂·2HCl, in 500 mL DW.

(A4.2) Nitrite

Sulfanilamide, 0.06 μ mol L⁻¹ (1 % w/v); Shared from nitrate reagent.

N-1-naphtylethylene-diamine dihydrochloride (NEDA), 0.004 μ mol L⁻¹ (0.1 % w/v); Shared from nitrate reagent.

(A4.3) Phosphate

Ammonium molybdate, 0.005 μ mol L⁻¹ (0.6 % w/v);

Dissolve 3 g ammonium molybdate(VI) tetrahydrate, (NH₄)₆Mo₇O₂₄·4H₂O, and 0.05 g potassium antimonyl tartrate, C₈H₄K₂O₁₂Sb₂·3H₂O, in 400 mL DW and add 40 mL concentrated H₂SO₄. After mixing, dilute the solution with DW to final volume of 500 mL and add 2 mL sodium dodecyl sulfate (15 % solution in water).

L(+)-ascorbic acid, 0.08 μ mol L⁻¹ (1.5 % w/v);

Dissolve 4.5 g L(+)-ascorbic acid, C₆H₈O₆, in 300 mL DW. After mixing, add 10 mL acetone. This reagent was freshly prepared before every measurement.

(A4.4) Silicate

Ammonium molydate, 0.005 μ mol L⁻¹ (0.6 % w/v);

Dissolve 3 g ammonium molybdate(VI) tetrahydrate, (NH₄)₆Mo₇O₂₄·4H₂O, in 500 mL DW and added concentrated 2 mL H₂SO₄. After mixing, add 2 mL sodium dodecyl sulfate (15 % solution in water).

Oxalic acid, 0.4 μ mol L⁻¹ (5 % w/v);

Dissolve 25 g oxalic acid dihydrate, (COOH)2·2H2O, in 500 mL DW.

L(+)-ascorbic acid, 0.08 μ mol L⁻¹ (1.5 % w/v); Shared from phosphate reagent.

(A4.5) Baseline

Artificial seawater (salinity is ~34.7);

Dissolve 160.6 g sodium chloride, NaCl, 35.6 g magnesium sulfate heptahydrate, MgSO4·7H₂O, and 0.84 g sodium hydrogen carbonate, NaHCO₃, in 5 L DW.

References

- Aoyama, M., A. G. Dickson, D. J. Hydes, A. Murata, J. R. Oh, P. Roose and E. Malcom. S. Woodward (2010), Comparability of nutrients in the world's ocean, INSS international workshop 10-12 Feb. 2009, Paris
- Armstrong, F. A. J., C. R. Stearns and J. D. H. Strickland (1967), The measurement of upwelling and subsequent biological processes by means of the Technicon TM Autoanalyzer TM and associated equipment, *Deep-Sea Res.*, 14(3), 381–389.
- DOE (1994), Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2. *A.G. Dickson and C. Goyet (eds), ORNL/CDIAC-74*.
- Grasshoff, K., Ehrhardt, M., Kremling K. et al. (1983), Methods of seawater analysis. 2nd rev, *Weinheim: Verlag Chemie, Germany, West.*

Murphy, J. and Riley, J.P. (1962), Analytica chimica Acta, 27, 31-36.

Swift, J. H. (2010), Reference-quality water sample data: Notes on acquisition, record keeping, and evaluation. *IOCCP Report No.14, ICPO Pub. 134, 2010 ver.1*.

6. *Phytopigments (chlorophyll-a and phaeopigment)*

1 November 2019

(1) Personnel

Chihiro KAWAMURA (GEMD/JMA) Takashi MIYAO (GEMD/JMA)

(2) Station occupied

A total of 41 stations (Leg 1: 24, Leg 2: 17) were occupied for phytopigment measurements. Station location and sampling layers of phytopigment are shown in Figures C.5.1 and C.5.2.

Figure C.5.1. Location of observation stations of chlorophyll-*a*. Closed and open circles indicate sampling and no-sampling stations, respectively.

Bottle Depth Diagram along 40N

Figure C.5.2. Distance-depth distribution of sampling layers of chlorophyll-a.

(3) Reagents

N,N-dimethylformamide (DMF) Hydrochloric acid (HCl), 0.5 mol L⁻¹ Chlorophyll-*a* standard from *Anacystis nidulans* algae (Sigma-Aldrich, United States) Rhodamine WT (Turner Designs, United States)

(4) Instruments

Fluorometer: 10-AU (Turner Designs, United States) Spectrophotometer: UV-1800 (Shimadzu, Japan)

(5) Standardization

(5.1) Determination of chlorophyll-a concentration of standard solution

To prepare the pure chlorophyll-*a* standard solution, reagent powder of chlorophyll-*a* standard was dissolved in DMF. A concentration of the chlorophyll-*a* solution was determined with the spectrophotometer as follows:

chl *a* concentration (μ g mL⁻¹) = A_{chl} / a^{*}_{phy} (C5.1) where A_{chl} is the difference between absorbance at 663.8 nm and 750 nm, and a^{*}_{phy} is specific absorption coefficient (UNESCO, 1994). The specific absorption coefficient is 88.74 L g⁻¹ cm⁻¹ (Porra *et al.*, 1989).

(5.2) Determination of R and fph

Before measurements, sensitivity of the fluorometer was calibrated with pure DMF and a rhodamine 1 ppm solution (diluted with deionized water).

The chlorophyll-*a* standard solution, whose concentration was precisely determined in subsection (5.1), was measured with the fluorometer, and after acidified with 1–2 drops 0.5 mol L⁻¹ HCl the solution was also measured. The acidification coefficient (R) of the fluorometer was also calculated as the ratio of the unacidified and acidified readings of chlorophyll-*a* standard solution. The linear calibration factor (f_{ph}) of the fluorometer was calculated as the slope of the acidified reading against chlorophyll-*a* concentration. The R and f_{ph} in the cruise are shown in Table C.5.1.

Table C.5.1. R and f_{ph} in the cruise.

Acidification coefficient (R)	1.764
Linear calibration factor (fph)	7.8333

(6) Seawater sampling and measurement

Water samples were collected from 10-liters Niskin bottle attached the CTD-system and a stainless steel bucket for the surface. A 200 mL seawater sample was immediately filtered through 25 mm GF/F filters by low vacuum pressure below 15 cmHg, the particulate matter collected on the filter. Phytopigments were extracted in vial with 9 mL of DMF. The extracts were stored for 24 hours in the refrigerator at -30 °C until analysis.

After the extracts were put on the room temperature for at least one hour in the dark, the extracts were decanted from the vial to the cuvette. Fluorometer readings for each cuvette were taken before and after acidification with 1–2 drops 0.5 mol L⁻¹ HCl. Chlorophyll-*a* and phaeopigment concentrations (μ g mL⁻¹) in the sample are calculated as follows:

chl
$$a$$
 conc. = $\frac{F_0 - F_a}{f_{ph} \cdot (R - 1)} \cdot \frac{v}{V}$ (C5.2)

phaeo.conc. =
$$\frac{\mathbf{R} \cdot \mathbf{F}_0 - \mathbf{F}_a}{\mathbf{f}_{ph} \cdot (\mathbf{R} - 1)} \cdot \frac{\mathbf{v}}{\mathbf{V}}$$
 (C5.3)

F₀: reading before acidification

Fa: reading after acidification

R: acidification coefficient (F₀/F_a) for pure chlorophyll-a

fph: linear calibration factor

v: extraction volume

V: sample volume.
(7) Quality control flag assignment

Quality flag value was assigned to oxygen measurements as shown in Table C.5.2, using the code defined in IOCCP Report No.14 (Swift, 2010).

	0 1 .	0	
Flag	Definition	Chl a	Phaeo.
2	Good	247	247
3	Questionable	0	0
4	Bad (Faulty)	0	0
5	Not reported	2	2
	Total number	249	249

Table C.5.2. Summary of assigned quality control flags.

References

- Porra, R. J., W. A. Thompson and P. E. Kriedemann (1989), Determination of accurate coefficients and simultaneous equations for assaying chlorophylls *a* and *b* extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. *Biochem. Biophy. Acta*, 975, 384-394.
- Swift, J. H. (2010), Reference-quality water sample data: Notes on acquisition, record keeping, and evaluation. *IOCCP Report No.14, ICPO Pub. 134, 2010 ver.1*.
- UNESCO (1994), Protocols for the joint global ocean flux study (JGOFS) core measurements: Measurement of chlorophyll *a* and phaeopigments by fluorometric analysis, *IOC manuals and guides 29, Chapter 14*.

6. Total Dissolved Inorganic Carbon (DIC)

2 November 2023

(1) Personnel

ONO Hisashi SAITO Shu SAKAMOTO Naoaki

(2) Station occupied

A total of 41 stations (Leg 1: 24, Leg 2: 17) were occupied for total dissolved inorganic carbon (DIC). Station location and sampling layers of them are shown in Figures C.6.1 and C.6.2, respectively.

Figure C.6.1. Location of observation stations of DIC. Closed and open circles indicate sampling and no-sampling stations, respectively.

Bottle Depth Diagram along 40N

Figure C.6.2. Distance-depth distribution of sampling layers of DIC.

(3) Instrument

The measurement of DIC was carried out with DIC/TA analyzers (Nihon ANS Co. Ltd, Japan). We used two analyzers concurrently. These analyzers are designated as apparatus A and B.

(4) Sampling and measurement

Methods of seawater sampling, measurement and calculation of DIC concentrations were based on the Standard Operating Procedure (SOP) described in PICES Special Publication 3, SOP-2 (Dickson et al., 2007). All samples at four stations (RF-4466, 4475, 4510, 4525) and the sample of surface at station RF-4523 were poisoned with saturated mercury (II) chloride (HgCl₂) solution. DIC was determined by coulometric analysis (Johnson et al., 1985, 1987) using an automated CO₂ extraction unit and a coulometer. Details of sampling and measurement are shown in Appendix A1.

(5) Calibration

The concentration of DIC (C_T) in moles per kilogram (mol kg⁻¹) of seawater was calculated from the following equation:

$$C_{\rm T} = N_{\rm S} / \left(cV \cdot \rho_{\rm S} \right) \tag{C6.1}$$

where N_S is the counts of the coulometer (gC), cV is the calibration factor (gC (mol L⁻¹)⁻¹), and ρ_S is density of seawater (kg L⁻¹), which is calculated from the salinity of the sample and the water temperature of the water-jacket for the sample pipette. The values of cV were determined by measurements of Certified Reference Materials (CRMs) that were provided by Dr. Andrew G. Dickson of the Scripps Institution of Oceanography. Table C.6.1 provides information about the CRM batches used in this cruise.

Table C.6.1. Certified C_T and standard deviation of CRMs. Unit of C_T is µmol kg⁻¹. More information is available at the NOAA web site (https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/Dickson CRM/batches.html).

-	Datah numbar	119	115
	Batch humber	118	113
	C_{T}	2013.33±0.77	2007.45±0.41
	Salinity	33.377	33.572

The CRM measurement was carried out at every station. After the cruise, a value of cV was assigned to each apparatus (A, B). Table C.6.2 summarizes the cV values. Figure C.6.3 shows details.

Table C.6.2. Assigned cV and its standard deviation for each apparatus during the cruise. Unit is gC (mol L⁻¹)⁻¹.

Figure C.6.3. Results of the cV at each station assigned for apparatus (a) A and (b) B. The solid, dashed, and dotted lines denote the mean, the mean \pm twice the S.D., and the mean \pm thrice the S.D. for all measurements, respectively.

The precisions of the cV is equated to its coefficient of variation (= S.D. / mean). They were 0.172 % for apparatus A and 0.134 % for apparatus B. They correspond to 3.47 µmol kg⁻¹ and 2.69 µmol kg⁻¹ in $C_{\rm T}$ of CRM batch 118, respectively.

The value of C_T of some samples which were poisoned with HgCl₂ solution (Appendix A1) was multiplied by 1.00067 (= 300.2 / 300.0) to correct dilution effect induced by addition of 0.2 mL of HgCl₂ solution in a sampling bottle with a volume of ~300 mL.

(6) Quality Control

(6.1) Replicate and duplicate analyses

We took replicate (pair of water samples taken from a single Niskin bottle) and duplicate (pair of water samples taken from different Niskin bottles closed at the same depth) samples of DIC throughout the cruise. Table C.6.3 summarizes the results of the measurements with each apparatus. Figures C.6.4–C.6.5 show details of the results. The calculation of the standard deviation from the difference of sets of measurements was based on a procedure (SOP 23) in DOE (1994).

_	Apparatus A	Apparatus B
Measurement	Average magnitude	e of difference ± S.D.
Replicate	3.1±2.5 (N=58)	2.0±1.8 (N=78)
Duplicate	2.6±2.2 (N=31)	2.5±2.0 (N=34)

Table C.6.3. Summary of replicate and duplicate measurements. Unit is μ mol kg⁻¹.

Figure C.6.4. Results of (left) replicate and (right) duplicate measurements during the cruise versus (a) station number, (b) pressure, and (c) C_T determined by apparatus A. The green lines denote the averages of the measurements. The bottom panels (d) show histograms of the measurements.

Figure C.6.5. Same as Figure C.6.4, but for apparatus B.

(6.2) Measurements of CRM and working reference materials

The precision of the measurements was monitored by using the CRMs and working reference materials bottled in our laboratory (Appendix A2). The CRM (batch 118) and working reference material measurements were carried out at every station. At the beginning of the measurement of each station, we measured a working reference material and a CRM. If the results of these measurements were confirmed to be good, measurements on seawater samples were begun. At the end of a sequence of measurements at a station, another CRM bottle was measured. A CRM measurement was repeated twice from the same bottle. Table C.6.4 summarizes the differences in the repeated measurements of the CRMs, the mean C_T of the CRM measurements. Figures C.6.6–C.6.8 show detailed results.

Table C.6.4. Summary of difference and mean of C_T in the repeated measurements of CRM
and the mean $C_{\rm T}$ of the working reference material. These data are based on good
measurements. Unit is μ mol kg ⁻¹ .

	CRM		Working reference material
Apparatus	Average magnitude of difference ± S.D.	Mean Ave. ± S.D.	Mean Ave. ± S.D.
А	3.6±3.0 (N=44)	2013.4±2.7 (N=44)	2033.4±4.3 (N=72)

Figure C.6.6. The absolute difference (*R*) of C_T in repeated measurements of CRM determined by apparatus (a) A and (b) B. The solid line indicates the average of $R(\bar{R})$. The dashed and dotted lines denote the upper warning limit (2.512 \bar{R}) and upper control limit (3.267 \bar{R}), respectively (see Dickson et al., 2007).

Figure C.6.7. The mean C_T of measurements of CRM. The panels show the results for apparatus (a) A and (b) B. The solid line indicates the mean of the measurements throughout the cruise. The dashed and dotted lines denote the upper/lower warning limit (mean ± 2S.D.) and the upper/lower control limit (mean ± 3S.D.), respectively. The gray dashed line denotes certified C_T of CRM.

Figure C.6.8. Calculated C_T of working reference material measured by apparatus (a) A and (b) B. The solid, dashed and dotted lines are the same as in Figure C.6.7.

(6.3) Comparisons with other CRM batches

At every few stations, other CRM batch (115) was measured by apparatus B to provide comparisons with batch 118 to confirm the determination of C_T in our measurements. For these CRM measurements, C_T was calculated from the cV determined from batch 118 measurement. Figures C.6.9 show the differences between the calculated and certified C_T .

Figure C.6.9. The differences between the calculated C_T from batch 118 measurements and the certified C_T of CRM batch 115.

(6.4) Quality control flag assignment

A quality control flag value was assigned to the DIC measurements (Table C.6.5) using the code defined in the IOCCP Report No.14 (Swift, 2010).

Flag	Definition	Number of samples
2	Good	1244
3	Questionable	71
4	Bad (Faulty)	16
5	Not reported	0
6	Replicate measurements	136
Total number of samples		1467

Table C.6.5. Summary of assigned quality control flags.

Appendix A1. Methods (A1.1) Seawater sampling

Seawater samples were collected from 10-liters Niskin bottles mounted on CTD-system and a stainless steel bucket for the surface. Samples for DIC/TA were transferred to Schott Duran[®] glass bottles using sample drawing tubes. Bottles were filled smoothly from the bottom after overflowing double a volume while taking care of not entraining any bubbles, and lid temporarily with ground glass stoppers.

After all sampling finished, 2 mL of sample was removed from each bottle to make a headspace to allow thermal expansion. If we processed poisoning, 0.2 mL of saturated HgCl₂ solution was added to seawater sample. Finally, samples were sealed with ground glass stoppers lubricated with Apiezon[®] grease (L).

(A1.2) Measurement

The unit for DIC measurement in the coupled DIC/TA analyzer consists of a coulometer with a quartz coulometric titration cell, a CO₂ extraction unit and a reference gas injection unit. The CO₂ extraction unit, which is connected to a bottle of 20 % v/v phosphoric acid and a carrier N₂ gas supply, includes a sample pipette (approx. 12 mL) and a CO₂ extraction chamber, two thermoelectric cooling units and switching valves. The coulometric titration cell and the sample pipette are water-jacketed and are connected to a thermostated (25 °C) water bath. The automated procedures of DIC analysis in seawater were as follows (Ishii et al., 1998):

- (a) Approximately 2 mL of 20 % v/v phosphoric acid was injected to an "extraction chamber", *i.e.*, a glass tube with a course glass frit placed near the bottom. Purified N₂ was then allowed to flow through the extraction chamber to purge CO₂ and other volatile acids dissolved in the phosphoric acid.
- (b) A portion of sample seawater was delivered from the sample bottle into the sample pipette of CO₂ extraction unit by pressurizing the headspace in the sample bottle. After temperature of the pipette was recorded, the sample seawater was transferred into the extraction chamber and mixed with phosphoric acid to convert all carbonate species to CO₂ (aq).
- (c) The acidified sample seawater was then stripped of CO₂ with a stream of purified N₂. After being dehumidified in a series of two thermoelectric cooling units, the evolved CO₂ in the N₂ stream was introduced into the carbon cathode solution in the coulometric titration cell and then CO₂ was electrically titrated.

A2. Working reference material recipe

The surface seawater in the western North Pacific was taken until at least a half year ago. Seawater was firstly filtered by membrane filter (0.45 μ m-mesh) using magnetic pump and transfer into large tank. After first filtration finished, corrected seawater in the tank was

processed in cycle filtration again for 3 hours and agitated in clean condition air for 6 hours. On the next day, agitated 5 minutes to remove small bubbles on the tank and transfer to Schott Duran[®] glass bottles as same method as samples (Appendix A1.1) except for overflowing a half of volume, not double. Created of headspace and poisoned with HgCl₂ was as same as samples, finally, sealed by ground glass stoppers lubricated with Apiezon[®] grease (L).

References

- Dickson, A. G., C. L. Sabine, and J. R. Christian (Eds.) (2007), Guide to best practices for ocean CO₂ measurements. *PICES Special Publication 3*, 191 pp.
- DOE (1994), Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2. *A. G. Dickson and C. Goyet (eds), ORNL/CDIAC-*74.
- Ishii, M., H. Y. Inoue, H. Matsueda, and E. Tanoue (1998), Close coupling between seasonal biological production and dynamics of dissolved inorganic carbon in the Indian Ocean sector and the western Pacific Ocean sector of the Antarctic Ocean, *Deep Sea Res. Part I*, 45, 1187–1209, doi:10.1016/S0967-0637(98)00010-7.
- Johnson, K. M., A. E. King and J. McN. Sieburth (1985), Coulometric TCO2 analyses for marine studies; an introduction. *Marine Chemistry*, **16**, 61–82.
- Johnson, K. M., J. M. Sieburth, P. J. L. Williams and L. Brändström (1987), Coulometric total carbon dioxide analysis for marine studies: Automation and calibration. *Marine Chemistry*, **21**, 117–133.
- Swift, J. H. (2010): Reference-quality water sample data, Notes on acquisition, record keeping, and evaluation. *IOCCP Report No.14, ICPO Pub.* **134**, 2010 ver.1.

7. Total Alkalinity (TA)

2 November 2023

(1) Personnel

ONO Hisashi SAITO Shu SAKAMOTO Naoaki

(2) Station occupied

A total of 41 stations (Leg 1: 24 Leg 2: 17) were occupied for total alkalinity (TA). Station location and sampling layers of them are shown in Figures C.7.1 and C.7.2, respectively.

Figure C.7.1. Location of observation stations of TA. Closed and open circles indicate sampling and no-sampling stations, respectively.

Bottle Depth Diagram along 40N

Figure C.7.2. Distance-depth distribution of sampling layers of TA.

(3) Instrument

The measurement of TA was carried out with DIC/TA analyzers (Nihon ANS Co. Ltd., Japan). The methodology that these analyzers use is based on an open titration cell. We used two analyzers concurrently. These analyzers are designated as apparatus A and B.

(4) Sampling and measurement

The procedure of seawater sampling of TA bottles were based on the Standard Operating Procedure (SOP) described in PICES Special Publication 3 (Dickson et al., 2007). All samples at four stations (RF-4466, 4475, 4510, 4525) and the sample of surface at station RF-4523 were poisoned with saturated mercury (II) chloride (HgCl₂) solution. Details are shown in Appendix A1 in C.6.

TA measurement is based on a one-step volumetric addition of hydrochloric acid (HCl) to a known amount of sample seawater with prompt spectrophotometric measurement of excess acid using the sulfonephthalein indicator bromo cresol green sodium salt (BCG) (Breland and Byrne, 1993). We used a mixed solution of HCl, BCG, and sodium chloride (NaCl) as reagent. Details of measurement are shown in Appendix A1.

(5) Calculation

(5.1) Volume of sample seawater

The volumes of pipette $V_{\rm S}$ using in apparatus A and B was calibrated gravimetrically in our laboratory. Table C.7.1 shows the summary.

Apparatus	Vs / mL
А	42.0375
В	42.1978

(5.2) pH_T calculation in spectrophotometric measurement

The data of absorbance A and pipette temperature T (in °C) were processed to calculate pH_T (in total hydrogen ion scale; details shown in Appendix A1 in C.8) and the concentration of excess acid [H⁺]_T (mol kg⁻¹) in the following equations (C7.1)–(C7.3) (Yao and Byrne, 1998), $pH_T = -\log_{10}([H^+]_T)$

$$= 4.2699 + 0.02578 \cdot (35 - S) + \log\{(R_{25} - 0.00131) / (2.3148 - 0.1299 \cdot R_{25})\} - \log(1 - 0.001005 \cdot S) \quad (C7.1)$$

$$R_{25} = R_{T} \cdot \{1 + 0.00909 \cdot (25 - T)\} \quad (C7.2)$$

$$R_{T} = (A_{616}^{SA} - A_{616}^{S} - A_{730}^{SA} + A_{730}^{S}) / (A_{444}^{SA} - A_{444}^{S} - A_{730}^{SA} + A_{730}^{S}). \quad (C7.3)$$

In the equation (C7.1), R_T is absorbance ratio at temperature T, R_{25} is absorbance ratio at temperature 25 °C and S is salinity. A_{λ}^{S} and A_{λ}^{SA} denote absorbance of seawater before and after acidification, respectively, at wavelength λ nm.

(5.3) TA calculation

The calculated $[H^+]_T$ was then combined with the volume of sample seawater V_S , the volume of titrant V_A added to the sample, and molarity of hydrochloric acid HCl_A (in mmol L⁻¹) in the titrant to determine to TA concentration A_T (in µmol kg⁻¹) as follows:

$$4_{\mathrm{T}} = \left(-[\mathrm{H}^{+}]_{\mathrm{T}} \cdot (V_{\mathrm{S}} + V_{\mathrm{A}}) \cdot \rho_{\mathrm{SA}} + HCl_{\mathrm{A}} \cdot V_{\mathrm{A}}\right) / (V_{\mathrm{S}} \cdot \rho_{\mathrm{S}})$$
(C7.4)

 ρ_{SA} denote the density of seawater sample before and after the addition of titrant, respectively. Here we assumed that ρ_{SA} is equal to ρ_{S} , since the density of titrant has been adjusted to that of seawater by adding NaCl and the volume of titrant (approx. 2.5 mL) is no more than approx. 6 % of seawater sample.

The value of A_T of some samples which were poisoned with saturated HgCl₂ solution (Appendix A1 in C.6) was multiplied by 1.00067 (= 300.2 / 300.0) to correct dilution effect induced by addition of HgCl₂ solution.

(6) Standardization of HCl reagent

HCl reagents were prepared in our laboratory (Appendix A2) and divided into bottles (HCl batches). *HCl*_A in the bottles were determined using measured CRMs provided by Dr. Andrew G. Dickson in Scripps Institution of Oceanography. Table C.7.2 provides information about the CRM batch used during this cruise.

Table C.7.2. Certified A_T and standard deviation of CRM. Unit of A_T is µmol kg⁻¹. More information is available at the NOAA web site (https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/Dickson_CRM/batches.html).

Batch number	118	115
AT	2229.75±0.86	2242.84±0.69
Salinity	33.377	33.572

The CRM measurement was carried out at every station. The apparent *HCl*_A of the titrant was determined from CRM using equation (C7.4).

*HCl*_A was assigned for each HCl batches for each apparatus, as summarized in Table C.7.3 and detailed in Figure C.7.3.

Table C.7.3. Summary of assigned HCl_A for each HCl batches. The reported values are means and standard deviations. Unit is mmol L⁻¹.

Apparatus	HCl Batch	HCl_A
	A_1	49.2287±0.0189 (N=27)
٨	A_2	49.2396±0.0257 (N=42)
A	A_3	49.5365±0.0234 (N=35)
	A_4	49.3226±0.0258 (N=21)
	B_1	49.6787±0.0580 (N=56)
В	B_2	49.6690±0.0431 (N=32)
	B_3	49.9854±0.0939 (N=39)
	B_4	50.0617±0.0657 (N=42)

Figure C.7.3. Results of HCl_A measured by apparatus (a) A and (b) B. The HCl batch names are indicated at the top of each graph, and vertical lines denote the day when the HCl batch was switched. The red solid, dashed, and dotted lines denote the mean and the mean \pm twice the S.D. and thrice the S.D. for each HCl batches, respectively.

The precisions of HCl_A , defined as the coefficient of variation (= S.D. / mean), were 0.0384–0.0523 % for apparatus A and 0.0868–0.1879 % for apparatus B. They correspond to 0.86–1.17 µmol kg⁻¹ and 1.94–4.19 µmol kg⁻¹ in A_T of CRM batch 118, respectively.

(7) Quality Control

(7.1) Replicate and duplicate analyses

We took replicate (pair of water samples taken from a single Niskin bottle) and duplicate (pair of water samples taken from different Niskin bottles closed at the same depth) samples of TA throughout the cruise. Table C.7.4 summarizes the results of the measurements with each apparatus. Figures C.7.4–C.7.5 show details of the results. The calculation of the standard deviation from the difference of sets of measurements was based on a procedure (SOP 23) in DOE (1994).

_	Apparatus A	Apparatus B
Measurement Average magnitude of differ		of difference ± S.D.
Replicate	1.1±1.0 (N=74)	1.6±1.4 (N=64)
Duplicate	1.2±1.1 (N=41)	1.4±1.3 (N=30)

Table C.7.4. Summary of replicate and duplicate measurements. Unit is μ mol kg⁻¹.

Figure C.7.4. Results of (left) replicate and (right) duplicate measurements during the cruise versus (a) station number, (b) pressure, and (c) A_T determined by apparatus A. The green lines denote the averages of the measurements. The bottom panels (d) show histograms of the measurements.

Figure C.7.5. Same as Figure C.7.4, but for apparatus B.

(7.2) Measurements of CRM and working reference materials

The precision of the measurements was monitored by using the CRMs and working reference materials bottled in our laboratory (Appendix A2 in C.6). The measurements of the CRMs and working reference materials were the same those used to measure DIC (see (6.2) in C.6), except that the CRM measurement was repeated 3 times from the same bottle. Table C.7.5 summarizes the differences in the repeated measurements of the CRMs, the mean A_T of the CRM measurements, and the mean A_T of the working reference material measurements. Figures C.7.6–C.7.8 show detailed results.

	CRM		Working reference material
HCl Batches	Average magnitude of difference ± S.D.	Mean Ave. ± S.D.	Mean Ave. ± S.D.
A_1	0.8±0.6 (N=9)	2229.8±0.8 (N=9)	2264.5±1.4 (N=19)
A_2	1.3±1.1 (N=14)	2229.8±0.7 (N=14)	2265.0±1.0 (N=19)
A_3	0.8±0.6 (N=12)	2229.7±1.0 (N=12)	2263.4±1.2 (N=24)
4	1.2±0.9 (N=7)	2229.8±1.0 (N=7)	2264.2±1.1 (N=9)
B_1	2.2±1.8 (N=16)	2229.7±2.5 (N=16)	2263.5±3.7 (N=26)
B_2	1.9±1.5 (N=11)	2229.6±1.6 (N=11)	2263.9±2.0 (N=15)
B_3	2.6±2.2 (N=13)	2229.8±4.0 (N=13)	2263.5±3.4 (N=22)
B_4	1.4±1.3 (N=11)	2230.6±2.7 (N=11)	2262.3±3.1 (N=11)

Table C.7.5. Summary of difference and mean of A_T in the repeated measurements of CRM and the mean A_T of the working reference material. These data are based on good measurements. Unit is μ mol kg⁻¹.

Figure C.7.6. The absolute difference (*R*) of A_T in repeated measurements of CRM determined by apparatus (a) A and (b) B. The solid line indicates the average of *R* (\overline{R}). The dashed and dotted lines denote the upper warning limit (2.512 \overline{R}) and upper control limit (3.267 \overline{R}), respectively (see Dickson et al., 2007).

Figure C.7.7. The mean A_T of measurements of CRM. The panels show the results for apparatus (a) A and (b) B. The solid line indicates the mean of the measurements. The dashed and dotted lines denote the upper/lower warning limit (mean \pm 2S.D.) and the upper/lower control limit (mean \pm 3S.D.), respectively. The labels at the top of the graph and vertical lines have the same meaning as in Figure C.7.3.

Figure C.7.8. Calculated A_T of working reference material measured by apparatus (a) A and (b) B. The solid, dashed and dotted lines have the same meaning as in Figure C.7.7. The labels at the top of the graph and vertical lines have the same meaning as in Figure C.7.3.

(7.3) Comparisons with other CRM batches

At every few stations, other CRM batch (115) was measured by apparatus B to provide comparisons with batch 118 to confirm the determination of A_T in our measurements. For these CRM measurements, A_T was calculated from HCl_A determined from batch 118 measurement. Figures C.7.9 show the differences between the calculated and certified A_T .

Figure C.7.9. The differences between the calculated A_T from batch 118 measurements and the certified A_T of CRM batch 115. The labels at the top of the graph and vertical lines have the same meaning as in Figure C.7.3.

(7.4) Quality control flag assignment

A quality control flag value was assigned to the TA measurements (Table C.7.6) using the code defined in the IOCCP Report No.14 (Swift, 2010).

Flag	Definition	Number of samples
2	Good	1243
3	Questionable	69
4	Bad (Faulty)	16
5	Not reported	1
6	Replicate measurements	138
Total number of samples		1467

Table C.7.6. Summary of assigned quality control flags.

Appendix

A1. Measurement

The unit for TA measurements in the coupled DIC/TA analyzer consists of sample treatment unit with a calibrated sample pipette and an open titration cell that are water-jacketed and connected to a thermostated water bath (25 °C), an auto syringe connected to reagent bottle of titrant stored at 25 °C, and a double-beam spectrophotometric system with two CCD image sensor spectrometers combined with a high power Xenon lamp. The mixture of 0.05 N HCl and 40 μ mol L⁻¹ BCG in 0.65 M NaCl solution was used as reagent to automatically titrate the sample as follows:

- (a) A portion of sample seawater was delivered into the sample pipette (approx. 42 mL) following sample delivery into the DIC unit for a measurement. After the temperature in the pipette was recorded, the sample was transferred into a cylindrical quartz cell.
- (b) An absorption spectrum of sample seawater in the visible light domain was then measured, and the absorbances were recorded at wavelengths of 444 nm, 509 nm, 616 nm, and 730 nm as well as the temperature in the cell.
- (c) The titrant that contains HCl was added to the sample seawater by the auto syringe so that pH of sample seawater altered in the range between 3.85 and 4.05.
- (d) While the acidified sample was being stirred, the evolved CO_2 was purged with the stream of purified N₂ bubbled into the sample at approx. 200 mL min⁻¹ for 5 minutes.
- (e) After the bubbled sample steadied down for 1 minute, the absorbance of BCG in the sample was measured in the same way as described in (b), and pH (in total hydrogen ion scale, pH_T) of the acidified seawater was precisely determined spectrophotometrically.

A2. HCl reagents recipes

0.05 N HCl and 40 $\mu mol \ L^{-1}$ BCG in 0.65 M NaCl solution

Dissolve 0.30 g of BCG and 190 g of NaCl in roughly 1.5 L of deionized water (DW) in a 5 L flask, and slowly add 200 mL concentrated HCl. After the powders completely dissolved, dilute with DW to a final volume of 5 L.

References

- Breland II, J. A. and R. H. Byrne (1993), Spectrophotometric procedures for determination of sea water alkalinity using bromocresol green, *Deep-Sea Res. I*, 470, 629–641.
- Dickson, A. G., C. L. Sabine, and J. R. Christian (Eds.) (2007), Guide to best practices for ocean CO₂ measurements. PICES Special Publication 3, 191 pp.
- DOE (1994), Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2. *A. G. Dickson and C. Goyet (eds), ORNL/CDIAC-*74.
- Yao, W. and R. H. Byrne (1998), Simplified seawater alkalinity analysis: Use of linear array spectrometers. *Deep-Sea Res. I*, 45, 1383–1392.

Swift, J. H. (2010): Reference-quality water sample data, Notes on acquisition, record keeping, and evaluation. *IOCCP Report No.***14**, *ICPO Pub.* 134, 2010 ver.1.

8. *pH* 2 November 2023

(1) Personnel

ONO Hisashi SAITO Shu SAKAMOTO Naoaki

(2) Station occupied

A total of 41 stations (Leg 1: 24, Leg 2: 17) were occupied for pH. Station location and sampling layers of them are shown in Figures C.8.1 and C.8.2, respectively.

Figure C.8.1. Location of observation stations of pH. Closed and open circles indicate sampling and no-sampling stations, respectively.

Bottle Depth Diagram along 40N

Figure C.8.2. Distance-depth distribution of sampling layers of pH.

(3) Instrument

The measurement of pH was carried out with a pH analyzer (Nihon ANS Co. Ltd, Japan).

(4) Sampling and measurement

Methods of seawater sampling, spectrophotometric measurements using the indicator dye *m*-cresol purple (hereafter *m*CP) and calculation of pH_T (on the total hydrogen ion scale; Appendix A1) were based on Saito et al. (2008). All samples at four stations (RF-4466, 4475, 4510, 4525) and the sample of surface at station RF-4523 were poisoned with saturated mercury (II) chloride (HgCl₂) solution. Details are shown in Appendix A1 in C.6.

The pH_T is calculated from absorbance ratio (R) with the following equations,

$$pH_{T} = pK_{2} + \log_{10}\{(R - 0.0069)/(2.222 - 0.1331 \cdot R)\}$$
(C8.1)

$$R = \left(A_{578}^{\text{SD}} - A_{578}^{\text{S}} - A_{730}^{\text{SD}} + A_{730}^{\text{S}}\right) / \left(A_{434}^{\text{SD}} - A_{434}^{\text{S}} - A_{730}^{\text{SD}} + A_{730}^{\text{S}}\right)$$
(C8.2)

where pK_2 is the acid dissociation constant of *m*CP,

 $pK_2 = 1245.69/T + 3.8322 + 0.00211 \cdot (35 - S)$ (C8.3) (293 K \le T \le 303 K, 30 \le S \le 37).

 A_{λ}^{S} and A_{λ}^{SD} in equation (C8.2) are absorbance of seawater itself and dye plus seawater, respectively, at wavelength λ (nm). The value of p K_2 in equation (C8.3) is expressed as a function of temperature T (in Kelvin) and salinity S (in psu). Finally, pH_T is reported as the value at temperature of 25 °C. Details are shown in Appendix A1. We use two *m*CP solutions, first batch in Leg 1 (Stns.1-43) and second batch in Leg 2 (Stns.44-75) .

(5) pH perturbation caused by addition of *m*-cresol purple solution

The *m*CP solution using as indicator dye was prepared in our laboratory (Appendix A2) and was subdivided into some bottles (*m*CP batches) that attached to the apparatus. The injection of *m*CP solution perturbs the sample pH_T slightly because the acid-base equilibrium of the seawater is disrupted by the addition of the dye acid-base pair (Dickson et al., 2007).

Before applying *R* to the equation (C8.1), the measured *R* in the sample was corrected to that value expected to be unperturbed by the addition of the dye (Dickson et al., 2007; Clayton and Byrne, 1993). The magnitude of the perturbation (ΔR) was calculated empirically from that by the second addition of the dye and absorbance ratio measurement as follows:

$$\Delta R = R_2 - R_1, \tag{C8.4}$$

where R_1 and R_2 are the absorbance ratio after the initial addition of dye solution in the sample measurement and after the second addition in the experimental measurement, respectively. Because the value of ΔR depends on the pH_T of sample, we expressed ΔR as a quadratic function of R_1 based on experimental ΔR measurement obtained at this cruise as follows:

$$\Delta R = C_2 \times R_1^2 + C_1 \times R_1 + C_0. \tag{C8.5}$$

In each measurement for a station, ΔR was measured for about 10 samples from various depths to obtain wide range of R_1 and experimental ΔR data. For each *m*CP batch bottle, coefficients (C₀, C₁ and C₂) were calculated by equation (C8.5), and ΔR was evaluated for each R_1 . The coefficients for each *m*CP batch are showed in Table C.8.1. The plots and function curves are illustrated in Figure C.8.3.

$\frac{1}{10} = 0.0.11$ Summary of coefficients, 0.2 , 0.1 and 0.0 in $\Delta R = 0.2 \times R_1 + 0.1 \times R_1 + 0.0$.					
_	Stations	mCP batch	C_2	C_1	C_{0}
-	1–43	1	-1.76459E-03	-5.89115E-03	8.47566E-03
-	44–75	2	9.79441E-04	-1.46734E-02	1.34916E-02

Table C.8.1. Summary of coefficients; C₂, C₁ and C₀ in $\Delta R = C_2 \times R_1^2 + C_1 \times R_1 + C_0$.

Figure C.8.3. The function curve of the ΔR (= $R_2 - R_1$) vs R_1 for (upper) first and (lower) second *m*CP batch of solution shown in Table C.8.1.

(6) Quality Control

(6.1) Replicate and duplicate analyses

We took replicate (pair of water samples taken from a single Niskin bottle) and duplicate (pair of water samples taken from different Niskin bottles closed at the same depth) samples for pH_T determination throughout the cruise. In Leg 2, all pH_T data were assigned quality control flag only "4" (see section 7). Table C.8.2 summarizes the results of the measurements in Leg 1. Figure C.8.4 shows details of the results in Leg 1. The calculation of the standard deviation from the difference of sets of measurements was based on a procedure (SOP 23) in DOE (1994).

Table C.8.2. Summary of replicate and duplicate measurements of pH_T in Leg 1.

Measurement	Average magnitude of difference ± S.D.
Replicate	0.0019±0.0016 (N=83)
Duplicate	0.0015±0.0014 (N=42)

Replicate Sampling

Duplicate Sampling

Figure C.8.4. Results of (left) replicate and (right) duplicate measurements during the cruise versus (a) station number, (b) pressure and (c) pH_T in Leg 1. The green lines denote the averages of the measurements. The bottom panels (d) show histograms of the measurements.

(6.2) Measurements of CRM and working reference materials

The precision of the measurements was monitored by using the CRMs and working reference materials bottled in our laboratory (Appendix A2 in C.6). Although the pH_T value of the CRM was not assigned, it could be calculated from certified parameters of DIC and TA (https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-

system/oceans/Dickson_CRM/batches.html) based on the chemical equilibrium of the carbonate system (Lueker et al., 2000). The pH_T of the CRM (batch 118) was calculated to be 7.9200. Working reference material measurements were carried out first at every station. If the results of the measurements were confirmed to be good, measurements on seawater samples were begun. CRM (batch 118) measurements were done at every few (about 3) stations. The measurement for seawater sample and working reference material was made once for a single bottle, and that for CRM was made twice. Table C.8.3 summarizes the means of difference of pH_T between two measurements and pH_T values for a CRM bottle and the means of the pH_T value for a working reference material for each *m*CP batch. Figures C.8.5–C.8.7 show detailed results. In Leg 2, because apparent drift in pH_T measurements was determined (see section 7), standard deviation of the pH_T values through the leg was slightly large.

CRM		Working reference material	
<i>m</i> CP Batches	Magnitude of difference Ave. ± S.D.	Mean Ave. ± S.D.	Mean Ave. ± S.D.
1	0.0015±0.0012 (N=9)	7.9111±0.0023 (N=9)	7.9236±0.0019 (N=48)
2	0.0008±0.0007 (N=8)	7.9011±0.0040 (N=8)	7.9132±0.0043 (N=32)

Table C.8.3. Summary of difference and means of the pH_T values for two measurements for a CRM bottle, and mean of pH_T for a working reference material, which was calculated with data with good measurements.

Figure C.8.5. The absolute difference (*R*) of pH_T between two measurements of a CRM bottle. The *m*CP batch names are shown above the graph, and vertical lines denote the day *m*CP batches were changed. The solid, dashed and dotted lines denote the average range (\overline{R}), upper warning limit (2.512 \overline{R}) and upper control limit (3.267 \overline{R}) for each *m*CP batch bottle, respectively (see Dickson et al., 2007).

Figure C.8.6. The mean of pH_T values between two measurements of a CRM bottle. The *m*CP batch names are shown above the graph, and vertical lines denote the day when the *m*CP batch was changed. The solid, dashed, and dotted lines denote the mean of measurements, upper/lower warning limit (mean \pm 2S.D.), and upper/lower control limit (mean \pm 3S.D.) for each *m*CP batch bottle, respectively (see Dickson et al., 2007). The gray dashed line denotes pH_T of CRM calculated from certified parameters.

Figure C.8.7. Same as C.8.6, but for working reference material.

(6.3) Quality control flag assignment

A quality control flag value was assigned to the pH measurements (Table C.8.4) using the code defined in the IOCCP Report No.14 (Swift, 2010).

Table C.8.4. Summary of assigned quality control flags.

Flag	Definition	Number of samples
2	Good	743
3	Questionable	11
4	Bad (Faulty)	630
5	Not reported	1
6	Replicate measurements	83
Total number of samples		1468

(6.4) Comparison at cross-stations during the cruise

There were cross-stations during the cruise located at 40° N/167°-40′E and 40° N/165°E. At these points, hydrocast sampling for pH_T was conducted two times at interval of 16 days (Stns.43 and 44) and 26 days (Stns.39 and 75). These profiles are shown in Figure C.8.8.

Figure C.8.8. Comparison of pH_T profiles observed at the same location in different legs of this cruise: (a) 40° N/167°-40′E (Stns.43 and 44) and (b) 40° N/165°E (Stns.39 and 75). The red circles denote the profiles observed in Leg 1 (Stns.43 and 39) and gray crosses denote those in Leg 2 (Stns.44 and 75) assigned quality control flag 4 (see section 7). Triangles denote the difference in pH_T of them.

(6.5) Comparison at cross-stations of WHP cruises

We compared pH_T data of this cruise and other WHP cruises by JMA and Japan Agency for Marine-Earth Science and Technology (JAMSTEC) at cross points. Summary of the comparisons are shown in Figure C.8.9(a) for cross point with WHP-P10 line (around 40°N/145°E) and Figure C.8.9(b) for cross point with WHP-P13 line (around 40°N/165°E). Data of other cruises are downloaded from the CCHDO web site (https://cchdo.ucsd.edu).

Figure C.8.9. Comparison of pH_T profiles at (a) 40° N/145°E (cross point with WHP-P10 line) and (b) 40° N/165°E (cross point with WHP-P13 line). Circles and triangles denote good and questionable values, respectively. The red ones show this cruise.

(7) Problem

In Leg 2, the results of pH_T measurements of CRMs and working reference material were gradually decreased toward the end of Leg 2 (see Figures C.8.6 and C.8.7). The decrease was identified in pH_T profiles as about 0.015 below 2000 m at the cross stations between Leg 1 and Leg 2 (see Figures C.8.8). We believe that this unexpected drift was derived from stability of the light source of the instruments. It was difficult to correct these differences, then we assigned quality control flag 4 to all pH_T data in Leg 2 of this cruise.

Appendix A1. Methods (A1.1) Seawater sampling

Seawater samples were collected from 10-liters Niskin bottles mounted on CTD-system and a stainless steel bucket for the surface. Samples for pH were transferred to Schott Duran[®] glass bottles using sample drawing tubes. Bottles were filled smoothly from the bottom after overflowing double a volume while taking care of not entraining any bubbles, and lid temporarily with ground glass stoppers.

After all sampling finished, 2 mL of sample is removed from each bottle to make a headspace to allow thermal expansion. If we processed poisoning, 0.2 mL of saturated HgCl₂ solution was added to seawater sample to prevent change in pH_T caused by biological activity. Finally, samples were sealed with ground glass stoppers lubricated with Apiezon[®] grease (L).

(A1.2) Measurement

Custom-made pH analyzer (2009 model; Nihon ANS) was prepared and operated in the cruise. The analyzer comprised of a sample dispensing unit, a pre-treatment unit combined with an automated syringe, and two (sample and reference) spectrophotometers combined with a high power xenon light source. Spectrophotometric cell was made of quartz tube that has figure of "U". This cell was covered with stainless bellows tube to keep the external surface dry and for total light to reflect in the tube. The temperature of the cell was regulated to 25.0 ± 0.1 °C by means of immersing the cell into the thermostat bath, where the both ends of bellows tube located above the water surface of the bath. Spectrophotometer, cell and light source were connected with optical fiber.

The analysis procedure was as follows:

a) Seawater was ejected from a sample loop.

b) A portion of sample was introduced into a sample loop including spectrophotometric cell. The spectrophotometric cell was flushed two times with sample in order to remove air bubbles.

c) An absorption spectrum of seawater in the visible light range was measured. Absorbance at wavelengths of 434 nm, 488 nm, 578 nm and 730 nm as well as cell temperature were recorded. To eject air bubbles from the cell, the sample was moved four times and the absorbance was recorded at each stop.

d) 10 μ l of indicator *m*CP was injected to the loop.

e) Circulating 2 minutes 40 seconds through the loop tube, seawater sample and indicator dye was mixed together.

f) Absorbance of *m*CP plus seawater was measured in the same way described above (c).

(A1.3) Calculation

In order to state clearly the scale of pH, we mention " pH_T " that is defined by equation (C8.A1.3.1),

$$pH_{T} = -\log_{10}([H^{+}]_{T}/C^{0})$$
(C8.A1.3.1)

where $[H^+]_T$ denotes the concentration of hydrogen ion expressed in the total hydrogen ion scale. $[H^+]_T = [H^+]_F (1 + [SO_4]_T / K_{HSO_4})$, where $[H^+]_F$ is the concentration of free hydrogen ion, $[SO_4]_T$ is the total concentration of sulphate ion and K_{HSO_4} is acid dissociation constant of hydrogen sulphate ion (Dickson, 1990). C^0 is the standard value of concentration (1 mole per kilogram of seawater, mol kg⁻¹). The pH_T was reported as the value at temperature of 25 °C in "total hydrogen ion scale".

pH_T was calculated from the measured absorbance (A) based on the following equations (C8.A1.3.2) and (C8.A1.3.3), which are the same as (C8.1) and (C8.2), respectively.

$$pH_{T} = pK_{2} + \log_{10}([I^{2-}]/[HI^{-}])$$

= pK₂ + log₁₀{(R - 0.0069)/(2.222 - 0.1331 · R)} (C8.A1.3.2)
$$R = (A_{578}^{SD} - A_{578}^{S} - A_{730}^{SD} + A_{730}^{S})/(A_{434}^{SD} - A_{434}^{S} - A_{730}^{SD} + A_{730}^{S}) (C8.A1.3.3)$$

where pK_2 is the acid dissociation constant of *m*CP. $[I^{2^-}] / [HI^-]$ is the ratio of *m*CP base form (I^{2^-}) concentration over acid form (HI^-) concentration which is calculated from the corrected absorbance ratio (*R*) shown in the section 8(5) and the ratios of extinction coefficients (Clayton and Byrne, 1993). A_{λ}^{S} and A_{λ}^{SD} in equation (C8.A1.3.3) are absorbance of seawater itself and dye plus seawater, respectively, at wavelength λ (nm). The value of pK_2 (= $-\log_{10}(K_2/k^0)$, $k^0 = 1 \mod kg^{-1}$) had also been expressed as a function of temperature *T* (in Kelvin) and salinity *S* (in psu) by Clayton and Byrne (1993), but the calculated value has been subsequently corrected by 0.0047 on the basis of a reported pH_T value accounting for "tris" buffer (DelValls and Dickson, 1998):

$$pK_2 = pK_2(\text{Clayton \& Byrne, 1993}) + 0.0047$$

= 1245.69/T + 3.8322 + 0.00211 · (35 - S).
(293 K \le T \le 303 K, 30 \le S \le 37)
(C8.A1.3.4)

Finally, pH_T determined at a temperature t (pH_T(t), with t in °C) was corrected to the pH_T at 25.00 °C (pH_T(25)) with the following equation (Saito et al., 2008).

$$(pH_{T}(t) - pH_{T}(25))/(t - 25.00)$$

= (2.00170 - 0.735594 \cdot pH_{T}(25) + 0.0896112 \cdot pH_{T}(25)^{2} - 0.00364656 \cdot pH_{T}(25)^{3}).
(C8.A1.3.5)

A2. pH indicator

Indicator *m*-cresol purple (*m*CP) solution

Add 0.67 g *m*CP to 500 mL deionized water (DW) in a borosilicate glass flask. Pour DW slowly into flask to weight of 1 kg (*m*CP + DW), and mix well to dissolve *m*CP. Regulate the pH (free hydrogen ion scale) of indicator solution to 7.9 ± 0.1 by small amount of diluted NaOH solution (approx. 0.25 mol L⁻¹) if the pH was out of the range. The pH of indicator solution was monitored using glass electrode pH meter. The reagent had not been refining.

References

- Clayton T.D. and R.H. Byrne 1993. Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. *Deep-Sea Res. I*, **40**, 2115–2129.
- DelValls, T. A and A. G. Dickson, 1998. The pH of buffers based on 2-amino-2-hydroxymethyl-1,3-propanediol ('tris') in synthetic sea water. *Deep-Sea Res. I*, **45**, 1541-1554.
- Dickson, A.G. 1990. Standard potential of the reaction: AgCl(s) + 1/2 H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO_4^- in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodynamics, **22**, 113–127.
- Dickson, A.G., Sabine, C.L. and Christian, J.R. (Eds.) 2007. Guide to best practices for ocean CO₂ measurements. *PICES Special Publication* 3, 191 pp.
- Lueker, T.J, A.G. Dickson and C.D. Keeling, 2000. Ocean pCO_2 calculated from dissolved inorganic carbon, alkalinity, and equations for K_1 and K_2 : validation based on laboratory measurements of CO₂ in gas and seawater at equilibrium. *Marine Chem.*, **70**, 105-119.
- Saito, S., M. Ishii, T. Midorikawa and H.Y. Inoue 2008. Precise Spectrophotometric Measurement of Seawater pH_T with an Automated Apparatus using a Flow Cell in a Closed Circuit. *Technical Reports of Meteorological Research Institute*, **57**, 1–28.
- Swift, J. H. (2010): Reference-quality water sample data, Notes on acquisition, record keeping, and evaluation. *IOCCP Report No.14, ICPO Pub. 134, 2010 ver.1*