CRUISE REPORT: ARK-XVII_1 (Updated MAY 2015) Highlights Cruise Summary Information Section Designation ARK-XVII_1 (aka: ARK-XVII/1, 75N) Expedition designation (ExpoCodes) 06AQ20010619 Chief Scientists Eberhard Fahrbach / AWI Dates 2001 JUN 19 - 2001 JUL 29 Ship RV POLARSTERN Ports of call Bremerhaven, Germany - Tromsø, Norway 80° 29' 59" N Geographic Boundaries 14° 21' 45" W 15° 49' 45" E 72° 4' 57" N Stations 189 CTD stations Floats and drifters deployed 0 Moorings deployed or recovered 4 moorings deployed, 4 recovered Contact Information: Eberhard Fahrbach Alfred-Wegener-Institut für Polar- und Meeresforschung Columbusstraße Eberhard.Fahrbach@awi.de Die Expedition ARKTIS XVII/1 des Forschungsschiffes POLARSTERN 2001 The Expedition ARKTIS XVII/1 of the Research Vessel POLARSTERN in 2001 Herausgegeben von / Edited by Eberhard Fahrbach unter Mitarbeit der Fahrtteilnehmer with contributions of the participants Ber. Polarforsch. Meeresforsch. 433 (2002) ISSN 1618-3193 Arktis XV11/1 19. Juni 2001 -29. Juli 2001 Bremerhaven - Tromso FAHRTLEITER Eberhard Fahrbach KOORDINATOR Eberhard Fahrbach Inhalt/Content 1. Zusammenfassung und Fahrtverlauf 2. Itinerary and Summary 3. Weather conditions 4. Hydrographic conditions in the Greenland Sea 5. Processes in channel systems in the Eastern Greenland Sea 5.1 Structure and geological processes 5.2 Benthic distribution patterns and turn-over processes 5.3 Physical Processes 6. Observation of seabirds and marine mammals 7. Phytoplankton ecology and vertical particle flux 8. The role of protists in the food web of the Arctic Ocean 9. Deep sea biology 9.1 Causes and effects of physical, chemical and biological gradients in the deep sea 9.2 Investigations on the dynamics of benthic bacterial communities and their impact on small-scale heterogeneity patterns of Arctic deep- sea sediments 9.3 "Food falls" - natural disturbances at the seafloor of the deep sea 10. Water mass exchanges between the Arctic Ocean and the Nordic Seas 11. Acknowledgement 12. Beteiligte Institutionen/Participating institutions 13. Fahrtteilnehmer/Participants 14. Schiffspersonal/Ship's crew 15. Stationsliste/Station list 1. ZUSAMMENFASSUNG UND FAHRTVERLAUF E. Fahrbach Am 19. Juni 2001 verließ POLARSTERN Bremerhaven zur Forschungsreise ARKXVII/1 in das Europäische Nordmeer (Abb. 1). An Bord waren 43 Besatzungsmitglieder und 34 Fahrtteilnehnier/innen. Die Reise dauerte 41 Tage. Während dieser Zeit legten wir 5 307 Seemeilen zurück, um im Europäischen Nordmeer mehrere Forschungsprogramme mit unterschiedlichen fachlichen und regionalen Schwerpunkten durchzuführen. Sie hatten die Untersuchung der physikalischen, biologischen, chemischen und geologischen Bedingungen dieses Seegebiets zum Inhalt. Um die Verteilung der Wassermassen zu erfassen, wurden 189 CTD- Stationen (Conductivity, Temperature, Depth) ausgeführt (Abb. 2). Die Fahrt führte direkt in das Europäische Nordmeer, wo die Arbeiten am östlichen Ende eines hydrographischen Schnitts auf 75°N bei 15°50'E mit CTD- Messungen begannen. Durch jährliche Wiederholungsmessungen der Wassermasseneigenschaften sollen langfristige Veränderungen bei der Erneuerung der Tiefen- und Bodenwassermassen der Grönlandsee aufgedeckt werden. Die hydrographischen Daten haben gezeigt, dass die Temperaturzunahme im Bodenwasser um etwa 0,01K pro Jahr, die in den letzten Jahren beobachtet worden war, anhält. Im Gegensatz zu den früheren Jahren wurden drei Schlote mit homogener Vertikalverteilung von Temperatur und Salzgehalt bis auf 2300 m Tiefe angetroffen, die einen Einfluss auf den Verlauf der tiefen Konvektion im kommenden Winter haben können. Zur Erfassung der Bedingungen im Winter waren im vergangenen Jahr in der zentralen Grönlandsee 2 Verankerungen mit vertikalprofilierenden Messgeräten ausgelegt worden, die aufgenommen und zusammen mit einer dritten Verankerung neu ausgelegt wurden. Die Geräte haben während des gesamten Verankerungszeitraums in zweitägigem Abstand Temperatur- und Salzgehaltsprofile geliefert. Verbunden mit den CTD-Messungen wurden Wasserproben für die planktologischen Arbeiten genommen. Die Untersuchungen umfassten die Verteilung des Phytoplanktons in Abhängigkeit von Wassermassen und Meereis. Dazu wurden Wasserproben zur Bestimmung der Artenverteilung und summarischer Parameter wie Konzentration von partikulärem Kohlenstoff und Stickstoff, biogenem Silikat und Chlorophyll a genommen. Um die Artenzusammensetzung der Mikrozooplankton-Gemeinschaft und ihre Bedeutung für die trophischen Verknüpfungen im aquatischen Nahrungsnetz abzuschätzen, wurden während der Reise 7 Experimente mit Wasserproben ausgeführt. Nach der Rückkehr ins AWI werden auf der Grundlage von eingefrorenen Filtern die Abundanz der Bakterien und anhand fixierter Wasserproben die Abundanz von Protisten und Algen vor und nach der Inkubation des Experimentsdurchlaufes bestimmt. Aus den gewonnen Daten lässt sich der Fraßdruck einzelner Gruppen der Mikrozooplankton- Gemeinschaft unter in-situ Bedingungen ermitteln und somit ihre Bedeutung im Kohlenstofifluss nachweisen. Zur Untersuchung der oberen Glieder der Nahrungskette wurden immer dann Seevögel, Wale, Delphine, Robben und Eisbären gezählt, wenn das Schiff nicht auf Station lag. Am Kontinentalabhang von Ostgrönland bei etwa 74°30'N wurde im Rahmen des BMBF-Verbundprojektes ARKTIEF 2 ein Rinnensystem untersucht, um dessen Auswirkung auf die Wassermassenmodifikation, die Sedimentation und die Lebensbedingungen in der Tiefsee zu beurteilen. Transporte in Rinnen können energiereiche Ströme in ansonsten ruhigen Regionen hervorrufen, die einen deutlichen Einfluss auf die Umweltbedingungen in der Tiefsee haben können. Die Rinne war bereits im vergangenen Jahr bearbeitet worden. Deshalb konnten wir auf Vorkenntnissen aufbauen und das Untersuchungsgebiet erweitern. Wiederholungsmessungen sollen Aufschluss über die zeitliche Veränderungen geben. Als Grundlage erfolgte die Aufnahme der Bodentopographie mit Hydrosweep. Allerdings erlaubten die Eisbedingungen nur eingeschränkt, den Vorlauf der Rinne vom Kontinentalhang in die Tiefsee zu verfolgen. Daher konzentrierten sich die Arbeiten auf den Hangfuß und die Ausläufer in die Tiefsee. Allerdings deuten die Daten darauf hin, dass die Rinne nicht am oberen Hang sondern erst am Fuß beginnt. Mit einer Breite von wenigen Kilometern und einer Sprungtiefe von 50 bis 100 m, führt sie in Schlangenlinien über etwa 200 km in das Grönlandbecken. Dabei nehmen Eintiefung und Breite deutlich ab. Mit Multicorer, Großkastengreifer und Schwerelot wurden Proben innerhalb und außerhalb der Rinne gewonnen, um die Entstehung und die vorherrschenden Sedimentationsprozesse aufklären zu können. Die internen Strukturen des Rinnensystems wurden mit dem Echolot Parasound kontinuierlich aufgezeichnet. Das geschleppte Kamera-System OFOS (Ocean Floor Observation System) lieferte Fotos auf Querschnitten über die Rinne und von Vergleichsgebieten außerhalb der Rinne. Zur Beprobung der Rinnenfauna wurden zwei Hols mit dem Agassiz-Trawl sowie Multicorer- Probennahmen zur Bestimmung von Abundanz, Biomasse und Aktivität kleiner benthischer Organismen (Bakterien bis Meiofauna) ausgeführt. Mit diesen Daten sollen die Verteilungsmuster der benthischen Organismen in und um die Rinne erfasst werden, um die Bedeutung von benthischen Prozessen in Rinnen für das Ökosystem der arktischen Tiefsee beurteilen zu können. Benthische Verteilungsmuster, Aktivitäts- und Biomassendaten sollen Aufschluss geben, ob die Rinnen heute "aktive" oder "passive" Abflusssysteme darstellen. Messungen mit der CTD, die beim Fieren und Hieven über die Rinne geschleppt wurde, sollen dazu dienen, den potentiellen Beitrag von Strömungen in der Rinne zur Erneuerung der Wassermassen in der arktischen Tiefsee zu ermitteln. Ferner soll gezeigt werden, ob diese Strömungen die Ursache von sogenannten benthischen Stürmen sein können. Es hat sich allerdings herausgestellt, dass Verankerungen, mit denen von 1993 bis 1995 benthische Stürme gemessen wurden, 5 sm nördlich der Rinne lagen. Die Trübung des Wassers in der Rinne wich nicht wesentlich vom Hintergrund ab. Daraus lässt sich schließen, dass zumindest während des Messzeitraums keine Strömung vorhanden war, die zu erhöhter Suspension geführt hat. Weitere Aufschlüsse werden von den Daten aus verankerten Geräten erwartet, die wegen der Eisverhältnisse erst im September aufgenommen werden. Nach Abschluss der Arbeiten vor Ostgrönland dampfte POLARSTERN in die Framstraße. Im Arbeitsgebiet "Hausgarten" wurden die Ursachen und Effekte physikalischer, chemischer und biologischer Gradienten in der Tiefsee untersucht, um die Dynamik benthischer Bakteriengemeinschaften und ihren Einfluss auf kleinskalige Hoterogenitätsmuster sowie zwischenjährliche Variabilität in arktischen Tiefseesedimenten zu verstehen. Dazu wurden am Hang des Molloy Deep zwischen 1700 und 5500 m Tiefe Bodenproben mit dem Multicorer genommen. Sie werden zu molekulargenetischen Untersuchungen zur Ermittlung kleinskaliger Heterogenitätsmuster an Populationen von Tiefsee- Nematoden verwendet. Mit dem Einsatz eines freifallenden, mit Kamera, Scanning Sonar und beköderten Reusen bestückten Landers wurde die Fähigkeit von Amphipoden ermittelt, auf Nahrungsangebote, sogenannte "food falls" zu reagieren, die natürliche Störungen am Boden der Tiefsee darstellen. Der vertikale Partikelfluss im Hausgarten wurde mit verankerten Sinkstofffallen gemessen, die aufgenommen und wieder neu ausgelegt wurden. Als letztes Teilprogramm folgten CTD-Messungen in der Framstraße. Sie dienen dazu, im Zusammenhang mit Verankerungsmessungen, den Austausch von Wassermassen zwischen dem Europäischen Nordmeer und dem Nordpolarmeer zu bestimmen. In internationaler Kooperation mit dem Norsk Polar Institutt und der Universität Hamburg wird ein Feld von 14 Verankerungen aufrecht erhalten, das die Messung von Volumen-, Salz- und Wärmetransporten erlaubt. Drei dieser Verankerungen wurden ausgetauscht, um Bodendruckmesser auszubringen. Damit soll festgestellt werden, ob die Bodendruckfluktuationen nach ausreichender Kalibrierung als Maß für Transportschwankungen herangezogen werden können. Dann wäre es möglich, die Anzahl der Verankerungen nach einer ausreichenden Erprobungsphase zu verringern. Da die Verankerungen verhältnismäßig große Abstände haben und die Messgeräte nur mit eingeschränkter Genauigkeit messen, wurde zur hochauflösenden und genaueren Aufnahme der Verteilung von Temperatur und Salzgehalt ein zonaler Schnitt von der Küste Spitzbergens bis auf den ostgrönländischen Schelf ausgeführt. Mit einem weiteren Schnitt, der von der Nordwestecke Spitzbergens über den Rand des Sofia Deeps zum Meridian von Greenwich und dort bis auf 75°15' N führte, wurde die Aufspaltung des Atlantischen Wassers des Westspitzbergenstroms in drei Aste erfasst. Der erste führt entlang der Nordküste Spitzbergens, der zweite westlich des Yermakplateaus und der dritte speist die Rezirkulation südlich und innerhalb der Framstraße. Durch die günstigen Wetterbedingungen konnten die Arbeiten während der ganzen Reise zügig abgewickelt werden. Dadurch stand mehr Stationszeit als erwartet zur Verfügung. Anhaltende äußerst ruhige Wetterlagen hatten zur Folge, dass nur während weniger Stunden Winde der Stärke 7 gemessen wurden. Allerdings war das ruhige Wetter mit häufigem Nebel verbunden, der zeitweise die Aufnahme von Verankerungen und des Landers sowie die Fahrt im Eis behinderte. Die Meereisverteilung entsprach der frühen Sommersituation mit Eiskonzentration von 7 bis 9/10 im Ostgrönlandstrom, allerdings mit einer deutlich abnehmenden Tendenz. Auf dieser Reise begleitete uns der Maler Gerhard Rießbeck, dem es darum ging, den Gegenstand unserer Forschung, das eisbedeckte Nordmeer, aus seiner Sicht darzustellen. Er fertigte auf der Reise 41 Entwürfe und 500 Fotos an, die später dann die Vorlage zu Gemälden in Öl auf Holz bieten werden. Die wissenschaftlichen Arbeiten wurden am 27. Juli beendet. Auf der Rückreise erhielten wir Kenntnis, dass ein Lander, den wir für die Dauer eines Jahres in der Framstraße verankert hatten, vorzeitig aufgetaucht war. Da wir bereits zu weit vom Arbeitsgebiet entfernt waren, nahmen wir die Unterstützung des Norsk Polar lnstitutts in Anspruch, um den an der Oberfläche treibenden Lander zügig aufzunehmen, was umgehend durch die norwegische Küstenwache erfolgte. Für diese unbürokratische Form der internationaler Zusammenarbeit sind wir überaus dankbar. POLARSTERN lief dem Plan gemäß am 29. Juli 2001 in Tromsø ein. Abb. 1: Fahrtroute der POLARSTERN während der Forschungsreise ARK XVI II/1. Fig. 1: Cruise track of POLARSTERN during cruise ARK XVII/1. Abb. 2: CTD-Stationen, die während der POLARSTERN-Forschungsreise ARK XVII/1 ausgeführt wurden. Fig. 2: CTD stations which were obtained during POLARSTERN cruise ARK XVII/1. 2. ITINERARY AND SUMMARY E. Fahrbach POLARSTERN left Bremerhaven on 19 June 2001 for the cruise ARKXVII/1 in the Nordic Seas. On board were 43 crew members and 34 cruise participants. The cruise lasted 41 days. During this time we traveled 5307 nm to investigate the physical, chemical, biological and geological conditions at several regional and disciplinary foci in the Nordic Seas (Fig. 1). To measure the water mass distribution 189 CTD stations (Conductivity, Temperature, Depth) were obtained (Fig. 2). POLARSTERN steamed on direct way to the eastern end at 15°50'E of a CTD transect along 75°N across the Greenland Sea. The annually repeated hydrographic observations along the transect are used to investigate the long period variability of the formation of deep and bottom water. The data from this year show that the temperature increase of 0.01 K per year, which was derived from data obtained during cruises in previous years, kept on. In contrast to previous years three eddy-like structures with homogenous temperature and salinity down to 2300 m were observed. They might serve as a preconditioning to a new phase of deep open ocean convection in the Greenland Sea. Two moorings with profiling instruments were recovered in the central Greenland Sea and three new moorings were deployed. The profilers had worked successfully for the whole deployment period. Water samples from CTD stations were used to obtain the distribution and variability of phytoplankton species composition, biomass (chlorophyll a), particulate organic carbon and nitrogen and biogenic silica to understand the relation to sea ice cover and water column stability. The related vertical particle flux serves as food supply to the benthos. Furthermore water samples were used for experiments to study the role of the microzooplankton community for trophic interactions within the aquatic food web. Quantitative estimates of the at-sea distribution of seabirds and marine mammals were carried out from the bridge while the ship was moving. On the East Greenland continental slope at approximately 74°30'N multidisciplinary investigations were carried out in the framework of the BMBF project ARKTIEF 2 to investigate the role of deep-sea channels for water mass formation, sedimentation and living conditions of benthos. The channel flow might stimulate energetic currents in otherwise quiet regions that might have a considerable impact on the deep-sea environment. The first phase of the project started in summer 2000. Based on these results, we extended the study area. Measurements were repeated to assess long term variability. A basic requirement for the investigations are high-quality bathymetric data obtained from Hydrosweep surveys. However, ice conditions did not allow to track the channel far up the slope, Consequently our work concentrated on the foot of the continental slope and the deep sea. Preliminary results, however, indicate that this channel originates on the continental foot. The channel is a few kilometers wide and 50 to 100 m deep. It was captured over 200 km from the foot into the deep sea. On its way, it becomes narrower and less deep. With multicorer, giant box corer and piston corer samples were taken in the channel and the adjacent deep sea to study the long-term development and the sedimentation processes. The internal structure of the channel system was studied by Parasound echosounder. The Ocean Floor Observation System (OFOS) was towed across the channel and along two transects at the adjacent deep-sea floor. Samples of benthic organisms were taken with two hauls with the Agassiz trawl and by means of the multicorer. The latter will be used to analyse abundance, biomass and activity of small benthic biota (bacteria to meiofauna). The data allow to determine the distribution patterns of benthic organisms in and around channel systems in order to estimate the relevance of benthic processes within the channels for the Arctic Ocean ecosystem. Based on activity and biomass data, it might be possible to determine whether a channel system is "active" or "fossil". To identify strong currents light attenuation in the water column was measured with a CTD towed across the channel while hoisted and lowered. The measured water mass properties, in particular the attenuation, showed weak indications to follow the channel profile. However, the signal is too weak to be indicative for intensive currents. On the other hand such weak signals have to be treated with special care when the data are still in a rather raw status and time variability might disguise the effect. Causes and effects of physical, chemical and biological gradients in the deep sea were studied in Fram Strait on the eastern slope of Molloy Deep in water depth between 1700 m and 5500 m. The area includes a long-term station (AWI - "Hausgarten" at 79°04'N 4°l0'E in 2500 m water depth), and was already sampled in summer 2000 to detect interannual variability in the benthos. Samples with the multicorer were taken to investigate the dynamics of benthic bacterial communities and their impact on small-scale heterogeneity patterns of Arctic deep-sea sediments. Molecular genetics will be applied as a tool to understand small-scale heterogeneity in populations of Arctic deep-sea nematodes. Of particular interest are food falls that represent natural disturbances at the seafloor of the deep sea. They were simulated and observed by 6 deployments of a lander that was equipped with bait fish, cameras and a scanning sonar system to take slides from the approaching amphipods and catch them in traps. Studies of phytoplankton ecology and related biogeochemical parameters occurred with water samples in the vicinity of a mooring with sediment traps which was replaced. The work aims to understand the seasonality as well as the interannual differences of phytoplankton distribution patterns and the vertical particle flux. Fram Strait represents the only deep connection between the Arctic Ocean and the Nordic Seas. Just as the freshwater transport from the Arctic Ocean is thought to be of major influence on water mass formation in the Nordic Seas, the transport of warm and saline Atlantic water significantly affects the water mass characteristics in the Arctic Ocean. The inflow from the Arctic Ocean into the Nordic Seas influences the formation of water masses which are advected through Denmark Strait to the south and participate in the formation of the North Atlantic Deep Water. To determine the fluxes through Fram Strait a hydrographic section approximately along 79°N was repeated and 14 moorings are maintained. Three of them were exchanged to install bottom pressure recorders. It is expected that variations of the horizontal bottom pressure differences will yield sufficient information to derive transport fluctuations after careful calibration. The CTD survey was extended to capture the recirculation of the Atlantic Water flow in and south of Fram Strait by a section along the Greenwich Meridian and the spreading of the two branches east and west of Yermak Plateau. Favourable weather conditions with only a few hours of winds with force 7 facilitated the work. However, the calm weather was connected to frequent fog which at times obstructed mooring or lander work as well as proceeding in ice. The sea ice conditions corresponded to the expected early summer situation with significant ice concentrations between 7 and 9/10 in the East Greenland Current with a strongly decreasing tendency. One of the cruise participants was Gerhard Riel3beck, a painter. He intended to display the subject of our research, the ice covered ocean, through his view. For this purpose, he produced 41 sketches and 500 slides which are the basis of later paintings in oil on wood. The station work ended on 27 July on the Greenwich Meridian at 75°N. On our way to Tromsø, we obtained the message that a lander which we had deployed in Fram Strait to be moored there for a year, had returned to the surface prematurely. It was too late to return to the position and we had to ask the Norwegian Polar Institute for assistance. In a very unbureaucratic way with no delay the Norwegian Coast Guard recovered the lander successfully for which we are very grateful. POLARSTERN reached Tromsø on 29 July 2001 where the cruise ended. 3. WEATHER CONDITIONS K. Buldt, H.-J. Möller After leaving Bremerhaven the first part of the voyage in the North Sea was influenced by the frontal system of a low pressure field in the southern part of the Norwegian Sea with rain and visibility below 5 km for a time. Near the southern shores of Norway the southerly wind increased up to 6 Bft, Moving south-east the low pressure system crossed the course of POLARSTERN in the morning of the 21 June. Pressure rise at its backside built up a high pressure zone reaching from Barents Sea to western Europe which determined the weather for the rest of the transit. While sunshine prevailed at first, low clouds and fog came up later. In the research area along 75°N high pressure influence prevailed until end of June. Dense fog or low stratus clouds covered the Nordic Seas for long time. The high pressure extended from north-eastern Canada to the Greenland Sea. It was flanked by a sequence of low pressure systems extending from Kara Sea via northern Scandinavia and the Northeast Atlantic to Newfoundland. In consequence of this pressure distribution only light and variable winds blew near the eastern coast of Greenland since 26 June. At the end of the month, the center of high pressure moved to east and pressure fell at Greenland's coast. A flat low pressure trough merged with a low south-west of Iceland and another one near the North Pole. The wind shifted south-west to south and increased up to 6 Bft. Some days later, the Iceland low moved to the Norwegian Sea and the pressure gradient weakened. The wind abated at 3 July. While low stratus and fog dominated before, now sunshine and weak frost set in. A new low pressure system formed near Cap Farvel and moved to Denmark Strait. Then it joined a low pressure trough extending from the Pole to East Greenland. With southerly wind humid air came up and dense fog dominated for longer periods. In the morning of 7 July the low pressure trough crossed our course eastward. Then, wind direction changed to north-west and a dry airflow caused good visibility. In connection with pressure rise over Greenland and pressure fall near the Norwegian coast the northerly winds reached to 5 and 6 Bft for a time and occasionally snow was observed. After the 10 July, a gale centre moved over the Norwegian Sea north- eastward. Its frontal system crossed Fram Strait at 14 July and the visibility rose up to more than 100 km rapidly. At the middle of the month a large high pressure system developed over the Nordic Seas. Only weak winds mainly from north set in. The visibility changed from fog to 100 km or more within a few minutes, This conditions persisted until 22 July when the main wind direction changed to south, because the axis of high pressure crossed POLARSTERN. Pressure fall over the coast of East Greenland built up a strong gradient at the western and central part of the Fram Strait and the wind increased up to 7 Bft for a short time at 23 July. At the end of the voyage the subpolar high moved to northeast followed by a North Atlantic low. In consequence the wind changed to easterly directions. Later on the wind veered to southwest because a high pressure system build up over Skandinavia. Characteristics of weather conditions are summarized in Figs. 3 to 6. Fig. 3: Frequency distribution of wind force during ARK XVII/1 Abb. 3: Häufigkeitsverteilung der Windstärke während ARK XVII/1. Fig. 4: Frequency distribution of wind direction during ARK XVII/1. Abb. 4: Häufigkeitsverteilung der Windrichtung während ARK XVII/1. Fig. 5: Weather chart displaying conditions typical for ARK XVII/1. Abb. 5: Wetterkarte mit für ARK XVII/1 typischen Wetterbedingungen. Fig. 6: Sea ice conditions typical for ARK XVII/1. Abb. 6: Meereisverteilung während der für ARK XVII/1. 4. HYDROGRAPHIC CONDITIONS IN THE GREENLAND SEA G. Budéus, V. Lüer, I. Meyer-Holste, S. Müller, B. Plüger, R. Plugge, S. Ronski Objectives Bottom water renewal in the Greenland Sea by deep convection in interplay with ice coverage and atmospheric forcing is a major element of the water mass modification in the Arctic Mediterranean. Effects influence both the central Arctic Ocean and the overflow waters into the Atlantic. Since the hydrographic observations became more frequent in the late 1980s, no bottom water renewal by winter convection took place, however. Under these conditions, the deep water properties change towards higher temperatures and salinities. Furthermore, the doming structure in the Greenland Gyre, as it was observed in the mid-80s, was superseded by an essentially 2-layered water mass distribution with a marked density step which is located presently at about 1500 m. The specific objectives of the project, which is incorporated in the EU funded CONVECTION, are • to investigate the relative importance of atmospheric forcing parameters for winter convection, • to clarify whether ice coverage inhibits or facilitates deep convection, • to build a long term observational basis about deep water changes in the Greenland Gyre, and • to contribute to the decision which deep water exchange mechanisms are at work under the absence of deep winter convection. Work at sea In the central Greenland Sea, a long term zonal CTD transect at 75°N has been performed with a regular station spacing of 10 nautical miles (Fig. 2 and 7). This distance has not been reduced at frontal zones in order to gain time for a couple of stations dedicated to the investigation of an convective eddy which had been detected earlier and had been marked with an APEX float to facilitate its identification. Two in house developed EP/CC (externally powered/compressibility compensated) Jojo moorings have been exchanged during splendid weather conditions. One additional Jojo mooring has been deployed according to the EU contract of the project CONVECTION. Deployments and recoveries revealed no problems and all equipment worked faultlessly. This is also true for the CTD work. It is not possible to describe the full details of calibration and data procedures here. A few hints may suffice to give an idea about the general procedure. We use the same sensors already for a number of years and checked for their performance with respect to unwanted cross dependencies. According to this, one of the temperature sensors shows a pressure sensitivity of roughly 1.5 mK/4000 dbar while no pressure or temperature dependence of the conductivity sensors could be found. To identify the latter is close to impossible in the field (within the polar oceans) because of the high gradients in the upper water column where temperature differences occur. The locations of in-situ comparisons have been chosen carefully by checking for each data point whether a comparison is al- lowed or inadmissible. As there is no suitable location in Fram Strait except the deep waters of Molloy Deep, the opportunity for an in-situ comparison there has been used. Duplicate sensors have been utilized throughout, with varying positions on the CTD. Time alignment has been optimised for each flow path separately (stations 54 and 75) and will be applied together with final post cruise calibration. The difference between pre-cruise and post-cruise calibration is normally in the range of a few mK and a few 1/1000 in salinity. Bottle sample salinities of triple samples are determined as a rough check on board, in the lab on land, and by Ocean Scientific. In addition to the standard parameters, the following properties have also been measured: Chlorophyll fluorescence (Haardt), oxygen (SBE43, first test), and transmission (Seatech, 30 cm), Preliminary results The most outstanding single feature of the survey in the Greenland Sea was certainly the convective eddy, which was revisited for the second time after its detection in early spring. This feature represents the deepest convection level observed in recent years. It was found close to the Greenwich Meridian a few miles south of 75°N. The homogeneous water column extended to about 2300 dbar, with the ubiquitous temperature maximum (found usually at medium depth levels of some 1500 to 1700 m) displaced downwards to 2700 m. The feature has been covered with five stations which showed that at present the APEX drifter is not located exactly in the centre of the eddy. The eddy contains water which is denser than the surrounding at low pressure levels (about 600 m), but considerably less dense at higher pressures. This indicates that the water within the eddy is not likely to replace bottom water. There are indications that the eddy may not have been formed during the last winter but before and that its lifetime exceeds one year. A second eddy with a similar structure was observed during on the regular transect at about 2°W. The temperature maximum was located at a slightly smaller depth level (2200 dbar). No attempt has been made to investigate its horizontal extent or identify its centre. The nearby Jojo mooring at 2°30 W captured the passing of such a structure which belongs presumably to the same eddy. The mooring data show that the vertical extent of the homogenized water column exceeds greatly the actual winter ventilation depth in mid winter. The conditions within the two eddies differ from those in the surrounding waters where winter convection did not penetrate through the temperature maximum and is confined mostly to about 1000 m. Since the water properties in 2000 and 2001 are very similar, the Jojo moorings serve as the best indicators for winter ventilation depth. A generally valid estimate the depth level of the temperature maximum is not possible because of the distortions of the isotherms induced by the eddies. In the mid gyre a depth level of roughly 1700 dbar is observed. However it is beyond any doubt, that the warming of the bottom waters, observed during the last years, continued with at usual rate of about 10 mK/year. The temperatures in the bottom waters increased e.g. from -1.145°C (potential temperature) in 2000 to -1.131°C in 2001 at 1°W. Consequently, the isotherm of e.g. -1.10°C is found at a greater depth in 2001 than in 2000 (3250 m and 3100 m respectively) in the central basin. Fig. 7: Transect of potential temperature and salinity across the Greenland Sea along 75°00'N. For location see Fig. 2, Abb. 7: Vertikalschnitt der potentiellen Temperatur und des Salzgehalts durch die Grönlandsee auf 75°00"N. Zur Lage des Schnitts, siehe Abb. 2. 5. PROCESSES IN CHANNEL SYSTEMS IN THE WESTERN GREENLAND SEA 5.1 Structure and geological processes A. Aahke, C. Hohmann, C. Kierdorf, J. Matthiessen, J. Vernaleken Objectives In the frame work of the multi-disciplinary research programme ARKTIEF sedimentation processes are studied on geological time-scales (± 1000-2000 years) in a channel system at the East Greenland continental margin. The geological programme aims at (1) characterizing the larger scale subsurface structure of the channel and the adjacent areas, (2) mapping the various sedimentary facies, and (3) sampling surface and near surface sediments for a detailed study of various sedimentological, organic geochemical and micropaleontological tracers which may reflect the various sedimentation processes, in particular gravitative mass transports. Additionally, the history of sediment transport in the channel will be elucidated by analysing sediment cores. These studies will contribute to a better understanding of the recent and past activity of the channel system. Work at Sea Bathymetrical survey The swath sounding system HYDROSWEEP was used during expedition ARK XVII/I for a bathymetric survey in the study area of ARKTIEF at the East Greenland continental margin. Based on the results of the survey during expedition ARK XVI/1 in 2000 (Krause and Schauer 2001), the adjacent lower continental slope and deep-sea areas were visited to continue the detailed mapping of the course of the channel. Furthermore, selected transects were conducted in the central portion of the system that was studied in 2000 to fill gaps in the bathymetric chart of this area. Sediment echosouding The ship-mounted PARASOUND echosounding system of POLARSTERN was in operation during the work in the Greenland Sea in order to characterize the acoustic behaviour of the uppermost sediment layers. The PARASOUND transects were conducted partly perpendicular to the axis of the channel in order to identify lateral variability of sedimentary facies. Furthermore, PARASOUND profiling was used to select coring locations and transects for the OFOS surveys. The data were digitised by two different systems: (1) the PARASOUND system for simultaneous printing on a chart recorder (Atlas Deso 25), and (2) by the PARADIGM system (Spiess 1992). For details of the method and standard settings used during the expedition see e.g. Niessen & Whittington (1994). Bottom sediment sampling Surface and near-surface sediments were collected in the study area on transects across the channel to sample the various sedimentary environments. A more detailed sampling was done along the OFOS transects in collaboration with the biology group. In order to get undisturbed surface and near-surface sediments, the giant box corer (GKG) with a size of 50x50x60 cm and the multi corer (MUG) with a tube diameter of 10 cm were used. The sampling was routinely done by MUG because of the better recovery of sediment surfaces. Gravity corers (SL) were used to obtain long sediment cores from the channel, the adjacent levees and the deep sea. Preliminary Results Bathymetry of the channel system A large-scale mapping with the GLORIA long-range side-scan sonar revealed the general pattern of a system with three major channels in the western Greenland Basin (Mienen et al. 1993; Hollender 1996) but only single separate segments of the channel system that were selected for detailed studies in the ARKTIEF project could be mapped. The preliminary results of our bathymetric surveys in 2000 (Krause and Schauer 2001) and in 2001 show that a single channel meanders from the lower continental slope to the abyssal plain over a distance of about 200 km (Fig. 8). The channel was tracked back from the Greenland Basin in ca. 3500 m water depth at ca. 74°45'N and 6°30'W to the continental rise at ca. 74°N and 13°15'W in about 2600 m water depth. Although the severe ice conditions during ARK XVII/1 hampered the survey at the continental slope, the few profiles suggest that there is not a single distinct channel extending upslope. Smaller tributary channels may be found running down slope but further detailed processing of the data is needed to allow a definite interpretation. Along the entire course, this channel system is developed as a single channel that is clearly separated from the other channel systems. East of 6°30'W distributary channels may have developed as indicated by the GLORIA data (Hollender 1996) but due to time constraints, the transition from the channel to the depositional area could only be studied along a single line when POLARSTERN left the area of operations to Fram Strait. Any larger depositional regions in the distal parts of the channel have not been observed. Morphology of the channel system The acoustic penetration was on the average down to a sediment depth of 25 to 40 m, except in the channel bottom and in the continental slope where penetration was usually less than 5 m. The channel system can be tentatively divided into 4 morphological divisions based on morphological and acoustic characteristics. The upper channel system extends from the continental slope to about 12°W (Fig. 8). The structure of the channel is less distinct than in the middle and lower channel system. A levee extends along the southern margin of the channel but it is almost indistinct at the northern margin. On the lower continental slope at the westernmost end of the mapped area, the channel is becoming much wider (ca. 10 km), probably ending at a slide headwall. Shallow depressions upslope (<10 m) of the possible headwall may indicate that tributary channels may originate on the upper continental slope. Although the acoustic penetration is low on the continental slope, debris flow deposits are clearly identified in most profiles. The middle channel system consists of a levied channel extending from the continental foot to about 9°30'W. Levees are usually well developed at both flanks, the southern one being consistently higher than the northern one giving the channel an asymmetric shape. Some levees stand out clearly by more than 20 m from the adjacent deep-sea plain. The U-shaped channel is incised into the sea floor up to 100 m, but mainly less than 50 m, and is relatively narrow with an average width of ca. 2000 m. The levee deposits usually show a number of distinct parallel acoustic reflectors whereas only one prominent reflector is seen in the channel sections. The channel bottom is relatively even. Fig. 8: Preliminary bathymetric map of the channel at the East Greenland margin based on HDROSWEEP data obtained during expeditions ARK XVII/1 and ARK XVII/1. Depth contours are at 10 m intervals (Processing of data by G. Hohmann). Abb. 8: Vorläufige bathymetrische Karte der untersuchten Rinne am ostgrönländischen Kontinentalhang, basierend auf den während der Expeditionen ARK XVII/1 und ARK XVII/1 erhobenen HYDROSWEEP-Daten. Abstand der Tiefenlinien ist 10 m (Datenprozessierung durch G. Hohmann). The lower channel system is characterized by a symmetric to asymmetric V- shape and the absence of prominent levees. Single cross sections are about 600 to 1000 m wide and the channel is incised up to 50-70 m (max. 150 m) into the sea-floor. The channel floor is relatively rough. Apparently, the channel shallows east of 7°W being in general less than 30-50 m deep and having again a symmetric U-shape. The channel floor is more even than west of 7°W. These observations are only based on few oblique profiles across the channel and these interpretations must be considered as rather tentative. Further HYDROSWEEP and PARASOUND surveys are required because only one relatively narrow stripe of ca. 5000 m width was mapped along the channel. In the Greenland Basin east of ca. 6°35'W PARASOUND profiles show that the channel widens considerably terminating possibly in larger depositional lobes that have been interpreted from the GLORIA profiles (Hollender 1996). Single lens shaped bodies with a transparent internal structure comparable to debris flows are possibly indicating sediment deposition related to transport in the channel system. However, further studies in this area are needed to reveal morphological details of this deep-sea depositional environment. Sedimentary environment along the channel system Bottom sediment sampling was conducted along the whole channel focusing on the central part of the system. The initial macroscopic analysis of the surface sediments suggests that the composition of sediments in the channel, the adjacent levees and the deep-sea areas is similar. The lack of erosional surfaces and the comparable sediment composition along the course of the channel suggest continuous recent and sub-recent deposition. Only short sediment cores were recovered from the channel floor. Gravity cores did not penetrate into the acoustic transparent layer below the top reflector. The core recovery was usually less than 100 cm indicating that only a thin cover with soft (Holocene?) sediments overlies bedrock. Longer sediment cores were only retrieved from the adjacent levees and the deep sea. Further detailed land based sedimentological, geochemical and micropaleontological studies as well as analysis of the HYDROSWEEP and PARASOUND records are required to evaluate the variability of sediments in the study area with respect to sedimentation and transport processes. References Hollender, F.-J. (1996): Untersuchungen des ostgrönländischen Kontinentalrandes mit dem Weitwinkel-Seiten-Sonar GLORIA. Ber. SFB 313, 67, 124p. Krause, G. & Schauer, U. (2001 eds), The expeditions ARK XVI/1 and XVI/2 of the Research Vessel "Polarstern" in 2000. - 8er. Polarforsch. Meeresforsch. 389. Mienen, J., Kenyon, N.H., Thiede, J., Hollender, F.-J. (1993): Polar continental margins: Studies of East Greenland, EOS, Trans. Amer. Geophys. Union 74(20), 225-236. Niessen, F., Whittington, P. (1994): Marine sediment echosounding using Parasound. In. Hubberten, H.-W. (ed), The Expedition ARKTIS-X12 of RV 'Polarstern" 1994. 8er. Polarforsch., 174, 62-68. Spiess, V. (1992): Digitale Sedimentechographie - Neue Wege zu einer hochauflösenden Akustostratigraphie. - Ber. Fachber. Geowiss. Univ. Bremen, 35, l99pp. 5.2 Benthic distribution patterns and turn-over processes S. Brückner, M. Dickmann, C. Hasemann, K. v. Juterzenka, T. Renneberg, I. Schewe, T. Schott, N. Queric Objectives Objectives of the planned biological and biochemical investigations within the ARKTIEF project are to assess large-scale distribution patterns of benthic organisms in and around channel systems crossing the eastern Greenland continental margin and the deep central Greenland Sea, and to estimate benthic processes within these areas and their relevance for the Arctic Ocean ecosystem. Based on activity and biomass data it might be possible to estimate the frequency and intensity of particle-loaded near- bottom currents within the channels, and to evaluate the quality of the suspended matter. The combination of results from optical surveys assessing distribution patterns of the larger epibenthic fauna with activity and biomass data for small sediment-inhabiting organisms from biochemical analyses will help to determine whether a channel system is "active" or "fossile". Work at Sea Small benthic organisms We hypothesize that the distribution as well as the activity of small benthic organisms are corresponding to the topographic and biochemical features of channel systems in terms of depth and distance to the channel centre. Benthic microbial processes are suspected to be directly connected to the occurrence of meio- and macrofaunal organisms. Sampling was performed by using a multicorer sampling system, allowing the investigation of an undisturbed sediment surface. A total of 11 stations were sampled in the vicinity of the channel system. Subsamples for abundance, diversity and activity of bacteria and meiofauna, as well as the biogenic sediment composition were taken using 5 ml and 20 ml syringes with cut off ends (see also section 9). Subsamples were sectioned horizontally in 1 cm-layers and analysed separately to investigate gradients within the sediment column. Bacterial production was measured via labeled leucine incorporation. Sediment-bound chloroplastic pigment equivalents (CPE) were determined on board to quantify organic matter input from primary production. To evaluate microbial exoenzymatic activities, esterase turn over rates were determined with the fluorogenic substrate fluorescein-di- acetate (FDA). Analyses of phospolipids and proteins will contribute to the assessment of living organisms and the proportion of detrital organic matter in the sediments. To assess the presence of traces, tracks and other 'Lebenspuren" of macrofauna, a photo of each core surface was taken before sampling. Mega-/Epifauna The Mega-/Epifauna in the vicinity of the channel system was observed by means of the Ocean Floor Observation System (OFOS), which is suitable for seafloor imaging in water depth down to 6000 m. The OFOS frame is equipped with a still camera (Benthos), a black and white video camera (Deep-Sea Power & Light), two floodlights with 250 W each, flashes (600 W/s) and three laser pointers in a fixed distance of 52 cm from each other as a size reference. The still camera was triggered on command or timer-controlled in 30 s intervals and was loaded with Kodak Ectachrome 100 ASA film, providing up to 800 shots per track. The whole system was towed across the seafloor in a distance of approx. 1.50 m with a drift velocity of approx. 0.5 kn. The distance to the bottom has to be controlled by the winch operator, by adjusting the cable length according to the video information. To sample the epibenthic fauna and obtain reference material for the analysis of OFOS images, a small Agassiz trawl (width 1 m) had been used. During the cruise, 7 OFOS transects have been performed. At St. 04, a first survey was made at the continental slope off Bear Island and was used to optimise the distance to the seafloor, camera specifications and timer- controlled operation and check laser performance. Overall, six transects were obtained in the main investigation area off East Greenland and will provide approx. 3050 colour slides of the sea floor. Four transects were placed across the ARKTIEF channel according to HYDROSWEEP information and PARASOUND profiles (St. 65, 69, 78, 84). St. 78 represents a profile at the central section of the channel which had been studied in 1999 by the ROV VICTOR6000 and in 2001 by the OFOS system and therefore allows an evaluation of interannual variability. To get an idea about the colonization of the deep-sea floor outside the channel, two transects were placed north and south of the central area (St. 73, 82; see Fig. 9). In the course of the transects, multicorer samples were taken inside and outside the channel to analyse small biota. Transects across the channel covered at least the bottom of the channel, slope and the adjacent seafloor (water depth about 3000 - 3200 m; transect length 1 to 2 nm). A first impression of the benthos fauna in the vicinity of the channel system is given by video information and short pieces of photo film, which were developed on board for quality control reasons. Seafloor images revealed two species of elpidiid holothurians, crinoids, traces and calcareous test of the irregular echinoid Pourtalosia jeffreysi, actinaria, gastropods and small pantopods as well as a variety of traces and tracks. Some ball-shaped sediment-coloured and bright structures are thought to represent several species of deep-sea sponges (e.g., Thenea abyssorum). Small pieces of solid substrate (e.g. dropstones) are colonized by anthozoans (Fig. 10). Fig. 9: Location of the sections in the ARKTIEF area where samples were taken and OFOS was deployed. Abb. 9: Lage der Schnitte im ARKTIEF-Gebiet, auf denen Proben genommen und OFOS-Aufnahmen ausgeführt wurden. Fig. 10: Sea floor images taken with OFOS which show that solid substrate (e.g. drop stones) is colonized by anthozoans. Abb. 10: Fotografische Aufnahmen mit OFOS, die zeigen, dass Hartsubstrate wie "drop stones" mit Anthozoen besiedelt sind. Two trawl catches along the channel axis provided material of dominant epibenthic organisms (mainly elpidiid holothurians, at least three species of deep-sea sponges, pycnogonids). Image analysis and species determination will take place at the home institute. The results of quantitative and qualitative evaluation of bacteria, meiofauna and epi/megafaunal organisms will contribute to the knowledge on the habitat heterogenity, distribution patterns, as well as biomass and activity patterns of benthos communities in this channel system, which had become the focus of interest in 1999. 5.3 Physical Processes G. Budéus, E. Fahrbach, V. Lüer, I. Meyer-Holste, S. Müller, B. Plüger, ft Plugge, S Ronski Objectives The aims of the ARKTIEF 2 project are to estimate the contribution of various processes to the modification of deep water masses in the Arctic, to understand the dynamics of these processes, and to assess their effect on the conditions for marine life. The acquired data and results should serve to improve the basis of physical and ecological modeling. In the past, water mass modification in the Greenland Sea took place mainly through deep-reaching convection, which is presently absent. However, the changes presently observed in the deep and bottom waters of the Greenland Sea indicate that other processes play a role in deep water modification. Shelf drainage via channels that extend down the continental slope of east Greenland into the deep sea is a potential process of deep water formation. Currents trapped in narrow channels could stimulate energetic flows in otherwise quiet regions, which has considerable impact on the sedimentation and living conditions in the deep sea. Work at sea To measure bottom current events three moorings are presently deployed in the ARKTIEF channel and will be replaced by LANCE in autumn 2001. During the present cruise oblique CTD-profiles with an attenuation sensor were measured across the channel to detect, if an elevated load of suspended matter would indicate enhanced currents (Figs 2 and 11). To obtain sufficient horizontal resolution the CTD was towed with 1 kn when hoisted and lowered within 500 m from the bottom. By this procedure the foot points of the profiles are 600 m apart and the profiles were in an angle of 35° to the vertical. Due to the wire angle the CTD was about 2 km behind the ship. Preliminary results The measurements with the CTD towed across the channel while hoisted and lowered should provide information if the water mass properties reflect the flow conditions in the channel. It is of interest if currents in the channel transport water masses from shallower depths into the deep sea and if the flow in the channel could be the origin of benthic storms. Those current events were observed with moored instruments from 1993 to 1995, It appeared that the moorings in that time had been deployed 5 km north of the channel since it was not yet known. The water mass properties measured with the towed CTD, in particular the attenuation, showed weak indications to follow the channel bottom profile (Fig. 11). However the signal is too weak to be indicative for intensive currents. On the other hand such weak signals have to be treated with special care when the data are still in a rather raw status and time variability might disguise the effect. Fig. 11a: Transect of potential temperature, salinity and attenuation across the ARKTIEF channel obtained by towing the CTD when hoisted and lowered within 500 m from the bottom. A channel west 1 St. 63, B channel west 2 St. 67. Abb. 11a: Vertikalschnitt der potentiellen Temperatur, des Salzgehalts und der Licht. Attenuation quer zur ARKTIEF-Rinne, gemessen in den unteren 500 m der Wassersäule mit einem beim Hieven und Fieren geschleppten CTD. A Rinne West 1 St. 63, B Rinne West 2 St. 67. Fig. 11b: Transect of potential temperature, salinity and attenuation across the ARKTIEF channel obtained by towing the CTD when hoisted and lowered within 500 m from the bottom. C central channel St. 75 and D channel east St 84. Abb. 11b: Vertikalschnitt der potentiellen Temperatur, des Salzgehalts und der LichtAttenuation quer zur ARKTIEF-Rinne, gemessen in den unteren 500 m der Wassersäule mit einem beim hieven und Fieren geschleppten CTD. C Rinne Mitte St. 75 und D Rinne Ost St. 84. 6. OBSERVATION OF SEABIRDS AND MARINE MAMMALS J. Tahon, B. Van Mol, B. Saveyn Objectives • To obtain a better knowledge of quantitative distribution of seabirds and marine mammals, based on the presence of different water masses and fronts, determined by water temperature and salinity. Basic aspects are abundance of preys. • To increase the volume of data, collected by the same team, using the same methodology. In this ARK XVII 1, a total of 25 species of birds was identified, as well as 5 species of whales, 1 of dolphins, 4 of seals and the polar bear. • To compare the data with earlier results collected in this region since 1974; since 1988 under icy conditions on board of POLARSTERN, METEOR 1985; POLARSTERN 1988 ARK V lb and V 2, 1990 ARK Vl12, 1991 ARK VIII 1 and 2, 1993 ARK IX 2 and 3; DALNIE ZELENTSY (Murmansk) 1991, 1992 and 1993. • To estimate the importance of followers within the counting. Followers are birds following a vessel for some time. They cause serious problems of counting because they circle around the vessel and are likely to be counted several times. They may sometimes outnumber the valuable counting data by a factor of 100, Different categories of followers are to be taken into account: a) Birds attracted some moments, from 10 km or more, by the superstructures of POLARSTERN, e.g. Uria aalge, Uria lomvia, Alle alle, Fratercula arctica, Cepphus grylle. b) Birds staying at one stop station (CTD, multi-boxcorer, ...) and sitting close at sea for 1/2 hour or more, to feed actively in the turbulences caused by the motors, e.g. Fulmarus glacialls, Rissa tridactyla, some skuas, some gulls ...... c) Real followers, following during hours, sometimes individually identified, mainly Fulmarus glacialis and Rissa tridactyla. Also to be taken into consideration are Morus bassanus, Stercorarius pomarmus, Stercorarius parasiticus, Stercorarius longicaudus, Larus fuscus, Larus argentatus, Larus marinus, Pagophila eburnea ..... The aim on this trip is to produce a basic protocol of general application to evaluate and eliminate the drawbacks caused by these followers. • Establish broad ecological comparison between European Arctic Seas and the Weddell Sea, Antarctica (POLARSTERN 1988 EPOS I leg 1). Work at sea A total of 5308 sea miles were traveled during the 40 days of navigation. For practical purposes, the cruise was divided into 7 legs or periods, totaling 680 Counts of 30 minutes. LEG PERIOD COUNTS -------------------------------------------------- ----------- ------ 1) The way North From Bremerhaven (53° N) to 750 N, 15° E 19/06-24/06 128 2) The 75° N transect From 15° E to 15° W across the Greenland Sea 24/06-01/07 110 3) ARKTIEF2 Channel System of the Eastern Greenland Sea 01/07-11/07 133 BOX 75°N - 12°W 75°N - 15°W 73°N - 13°W 73°N - 17°W 4) Towards 79° N To Svalbard and Fran Strait 11/07-12/07 51 5) AWI - Hausgarten BOX 80°N - 07°E 80°N - 02°E 12/07-19/07 96 79°N - 07°E 79°N - 02°E 6) The 79° N transect a) Towards 80° 30' N along Spitebergen 19/07-22/07 71 b) 79°N transect across Fram Strait and back 0° 22/07-25/07 56 7) The way back* From 79°N-long. 0° Greenwich to Tromsø (70°N) 25/07-28/07 35 ----------------------------------------------------------------------- 19/06 - 680 Total for the 7 legs 28/07/2001 counts An additional 58 uncompleted counts were discarded for several reasons: sudden dense fog, unpredicted stops of POLARSTERN, fruitful discussions aboard, e-mail duties, .... *the writing of the report was stopped at sea before the end of the trip at 75°15'N (27/07 at 05 h). While countings still went on. Preliminary results Level of presence per species A species is present or not in each count. The positive data introduced in a specific list of birds. At the end of the period, a percentage is obtained, relative to the total number of counts of the period. The species is then attributed to one of the 4 categories A, B, C or D, in order to situate the level of presence of that species (see species table). Species presence A > 50% of the counts of the period: very common B 25%-50% of the counts of the period: common C 5%-25% of the counts of the period: significant D <5% of the counts of the period: occasional For example: For the first period, the way North, there are two species represented in more than 50% of the counts (categorie A), in 65 counts or more on a total of 128 counts, namely Fulmarus glacial/s and Rissa tridactyla. Level of presence per species N of 30' BIRDS Total N of SEA MAMMALS Period dates counts A B C D species/ Species >50 25-50 5-25 <5 period w* d* s* p* ---------------------- ----------- -------- --- ----- ---- -- ---------- -- -- -- -- 1. The way North 19/06-24/06 128 2 0 6 13 18 4 1 0 0 2. The 75°N transect 24/06-01/07 110 0 2 5 11 18 0 1 4 1 a) no ice 24/06-30/06 (83) (0) (2) (5) (9) (16) (0) (1) (4) (0) b) ice 30/06-01/07 (27) (0) (2) (4) (5) (11) (0) (0) (4) (1) 3. ARKTIEF 2 01/07-11/07 133 0 2 4 7 13 0 0 4 1 4. Toward 79°N 01/07-12/07 51 0 4 2 3 9 1 1 1 0 5. AWI-Hauscgarten 12/07-19/07 96 2 2 3 2 9 3 1 3 0 6. The 79°N transect 19/07-25/07 127 0 3 4 8 15 2 0 3 1 a) Towards 80°30'N 19/07-22/07 (71) (3) (3) (1) (5) (12) (2) (0) (3) (1) b) 79°N transect 22/07-25/07 (56) (0) (0) (5) (5) (10) (2) (0) (2) (1) 7. The way back 25/07-27/07 35 2 2 2 0 6 0 0 2 0 Total 40 days 680 25 5 1 4 1 ------------------------ Total N of species *w=whales d=dolphins s=seals p=p. bear All bird species are listed in the next table, devoted to a specific presentation for the 7 periods. Comment: Few species are very common (categorie A) during one single period. Birds belonging to categories B and C are also relevant (common and significant) for the given period. Many species are only noted as D (occasional), sometimes during one single period. They are anecdotic for the study of food webs. Involved species List of the 25 observed bird species and frequency during the 7 periods. PERIODS 1 2a 2b 3 4 5 6a 6b 7 no ice ice NUMBER OF COUNTS 128 83 127 133 51 96 71 56 35 PROCELLARIIDAE Fulmarus glacialis A B B B C C B C B Puffinus puffinus D - - - - - - - - ANATIDAE Somateria sp. - - - - - - D - - SULIDAE Morus bassanus C - - - - - - - - SCOLOPACIDAE Numenius phaeopus D - - - - - - - - STERCORARIIDAE Stercorarius skua D D - - - - D - - Stercorarius pomarinus D C C C D - - D - Stercorarius parasiticus D D D D D D D - - Stercorarius longicaudus - - - D - - D D - LARIDAE Larus ridibundus - D - - - - - - - Larus canus D - - - - - - - - Larus argentatus D D - Larus fuscus C D D - - - - - - Larus marinus D D - - - - - - - Rhodostethia rosea - - - - - - - D - Rissa tridactyla A B B C B A A C B Larus hyperboreus D D D C D C C D - Pagophila eburnea - - D D - - - C - STERNIDAE Sterna paradisaea - D - D - - D - - ALCIDAE Alle alle D D C B B B A C A Fratercula arc(ica C C - D B B B - C Cepphus grylle - C - D - C B D C Uria aalge D C C D C D - - - Uria lomvia D C C C B A A C A Alca torda D - - - - - - - - Number of species 18 18 13 9 9 15 6 ----------------------------------------------------------------------- *A = present in more than 50% of the counts; B = present in 25 to 50% of the counts; C = present in 5 to 25 % of the counts; D = present in less than 5% of the counts. Only 11 species, present as A, B or C, in at least one period, are of real interest in the area for the study of trophic levels and food webs, i.e.: Fulmarus glacialis. Morus bassanus, Stercorarius pomarinus, Larus fuscus, Rissa tridactyla, Larus hyperboreus, Alle alle, Fratercula arctica, Cepphus grylle, Uria aalge and Uria lomvia. List of the observed sea mammals Whales and dolphins are mostly observed in "warm" water masses, free of ice; in contrast seals and polar bears are mainly seen on ice floes, which serve as physical supports. WHALES (Balaenopteridae) • Balaenoptera acutorostrata PERIOD N POSITION PERIOD N POSITION 1 1 66°48'N 06°27'E 6 1 79°29'N 10°13'E 5 79°03'N 04°25'E 6 3 74°59'N 02°03'E 5 1 78°53'N 05°18'E 6 1 79°46'N 00°14'E • Balaenoptera physalus PERIOD N POSITION PERIOD N POSITION 1 1 68°46'N 07°35'E 5 4 79°07'N 05°23'E 1 1 68°51'N 07°39'E 5 1 78°58'N 04°42'E 4 1 77°07'N 00°57'E 5 3 78°54'N 01°25'E • Megaptera navaeangliae PERIOD N POSITION PERIOD N POSITION 5 1 78°59'N 04°40'E 6 1 80°03'N 02°47'E • Physeter macrocephalus PERIOD N POSITION PERIOD N POSITION 1 1 65°50'N 05°56'E 1 1 73°10'N 12°03'E 1 1 69°03'N 07°47'E • Orcinus orca PERIOD N POSITION PERIOD N POSITION 1 11 66°53'N 06°30'E 1 5 72°08'N 10°05'E 1 3 71°15'N 09°22'E DOLPHINS • Lagenorhynchus albirostris Period 1 = 2 dolphins in 1 count at 74°22'N - 14°30'E. Period 2 = 25 dolphins in 5 counts from 75°00'N - 14°46'E to 75°00'N - 07°15'E. Period 4 = 19 dolphins in 2 counts from 77°58'N - 04°21'E to 78°45'N - 08°15'E. Period 5 = 6 dolphins in 1 count at 78°58'N - 04°42'E. SEALS • Pusa hispida or Phoca hispida Period 2: 9 seals in 4 counts from 75°00'N - 12°23'W to 74°57'N - 14°12'W. Period 3: 322 seals in 32 counts from 75°50'N - 13°03'W to 74°11'N - 12°35'W with concentrations of 16, 21, 29, 21, 16, 15, 27, 54, 34 and 23 Pusa hispida. Period 6: 2 seals in 2 counts at 79°53'N - 00°46'E and 79°00'N - 02°20'W. • Erignathus barbatus Period 2: 1 seal in 1 count at 74°58'N - 08°08'W in a group of P. groenlandicus. Period 3: 3 seals in 3 counts from 73°58'N -13°56'W to 74°12'N -12°19'W. Period 4: probably some 60 bearded seals in concentrations of Pagophilus groenlandicus (see P.gr). Period 5: 2 seals in 2 counts at 79°04'N - 03°37'E and at 78°58'N - 00°38'E. Period 7: 1 seal in 1 count at 78°32'N - 00°01'E. • Pagophilus groenlandicus or Phoca groenlandica Period 2: 293 seals in 8 counts from 74°49'N - 00°10'E to 75°00'N - 14°00'W with concentrations of 83 and 200 Pagophifus groenlandicus. Period 3: 146 seals in 6 counts from 73°56'N - 14°45'W to 74°24'N - 09°44'W with a concentration of 140 Pagophiius groenlandicus. Period 4: 4170 seals in 3 counts from 75°52'N - 03°21'W to 76°29'N - 01°15'W with concentrations of 200, 2400 and 1570 Pagophilus groenlandicus. Each time lying on a succession of ± 10 middle sized ice-floes. The two main groups at respectively 75° 57' N - 03° 11' W and 76° 29' N - 01° 15' W. Period 5: 17 seals in 9 counts from 78°00'N - 07°00'W to 78°58'N - 02°48'E. Period 6: 31 seals in 13 counts along the 79°N from 10°40'E to 01°55'W and back. Period 7: 354 seals in 3 counts with a concentration of 350 probably Pagophilus groenlandicus at 77° 42' N - 00° 01' E. • Cystophora cristate Period 2: some 10 seals in 1 count at 74°58'N - 08°08'W in a group of Pagophilus groenlandicus. Period 3: 5 seals in 4 counts from 74°06'N - 13°47'W to 74°11'N - 12°19'W. Period 4: probably some 60 hooded seals in a concentration of Pagophilus groanlandicus (see P.gr.). Period 5: 1 seal in 1 count at 78°58'N - 00°38'E. Period 6: 2 seals in 2 counts at 79°52'N - 00°38'E and 79°18'N - 00°03'W POLAR BEAR (Ursus maritimus) 10 polar bears from 73°58'N - 14°10'W to 75°00'N - 13°50'W. Period 2 3 1 female with 2 young at 75°00'N - 13°29'W 1 second year at 75°00'N - 13°50'W Period 3 1 eating at carcass at 74°05'N - 14°11'W 1 middle sized one at 73°58'N - 14°25'W 1 - at 74°11'N - 13°48'W 2 1 female with 1 young at 74°14'N - 13°41'W 1 a big one at 73°58'N - 14°l0'W This is an important concentration of 10 polar bears at rather low latitude. Period 6 1 bloodily eating at 80°00'N - 00°58'E 1 - at 78°58'N - 05°50'W Preliminary results • Almost all Fuirnarus glacialis individuals, at 79° N, belong to the dark form of the Fulmarus glacialis species. They are scarcely distributed in the area, being a little bit more numerous above ice floes than at sea, • As a family, Laridae are southern" birds. Rissa tridactyla and sometimes Larus hyperboreus are the ones to be seen at 79° N. • At 79° N, Rissa tridactyla is regularly present, most of the birds being adult individuals, probably breeding. Non-adult birds are found more to the south. • During periods 1 to 4, Stercorarius pomarinus was exceptionally frequent, from an ornithological point of view. It could mean that such a continental nesting bird stayed longer in the North Eastern Atlantic waters. Along the coast of Norway, migration normally occurs at the end of April and during May. That land species nests throughout northern Siberian, during May, mostly eating small rodents. Lemmings constitute a major part of their diet. Supposed absence of lemmings this year could have turned pomarine skuas to piracy at sea. • Alcidae is the best represented family in the North Eastern Atlantic and Arctic waters, namely with Uria lomvia (3.10 breeding pairs), Fratercula arctica (3.106 b.p.) and Alle alle (1,5.106 b.p.) For these three species, Spitsbergen, Eastern Greenland, Iceland and Norway are major haunts. Very high numbers of "crossers" coming from or going to colonies. (POLARSTERN was less than 10 km from Spitsbergen). The first two are fish eaters. The diet of the third is zooplankton. All of them play an important role in the trophic chains of the North Eastern Atlantic and Arctic seas. • Cepphus grylle is known to be a very coastal bird. Presence far at sea has been frequently observed. Nevertheless these observations are mostly involving 1st summer individuals, therefore not in charge of breeding duties. • As huge sea mammals that play a considerable role in trophic webs, whales were evidently to be involved in the counts. In agreement with literature concerning weight, 1 Physetermacrocephalus (sperm whale, Pottwal) (30 tons) is equivalent to 200.000 Alle alle (Little Auk, Krabbentaucher) (150 g). To no surprise they were mostly present in the "warm" waters of the West Spitsbergen Current, and were represented by 43 animals belonging to 5 species. • Living in family pods, Lagenorhynchus albirostris, small cetaceans of 200 kg, were observed mainly in West Spitsbergen Current, West of the Barents Sea, with a total of 52 individuals, Dolphins are very active fish eaters. They are easily observed from the vessel and in some way their importance is often overestimated. • Large concentrations of Pagophilus groenlanclicus (4170 individuals in 3 groups) were observed between 75° 52' N - 03° 21' W and 76° 29' N - 0l° 15' W. With a mean weight of about 100 kg, these fish eaters represent a very important web in the food chain. • Polar bears are super predators, standing at the top of the trophic chain, like man. The study of the behaviour of the mythic "Micha" is therefore of prime interest. A total of 10 Ursus maritimus (polar bears) were encountered in a relatively restricted area (between 75° 00' N - 13° 50' W and 73° 58' N - 14° 25' W), which is unusually south for that species. Reasons for that are to be discussed later (global increasing population? change in environmental conditions? prey occasionally concentrated more to the south? south eastern Greenland population? (See also Polar Bear studies, ARK IX 2 and 3, pp. 116-125). • Many warm-blooded animals (whales, dolphins, seals, walruses, etc.), just like cold-blooded ones (fish...) do not occupy large areas at random. They are concentrated in clusters where the food is accessible or where they nest (Alcidae on ice floes and cliffs) or where they moult (Anatidae). To be instantly ready to identify them at sea is a question of good knowledge of systematics and habits, but above all it requires an aggressive determination to perform long-term counting. Followers Because followers cause serious problems while counting, we tried to make an estimation of their impact. Therefore the number of birds of a species during a normal count (N) is compared with the number of followers of that species after the counting (N') and after 1 hour on CTD-station (N"). These data registered with or without ice and with or without fog are entered separately in the table. This has been done during the 75°N and the 79°N transects. The following tables show the results for Fulmaris glacialis and Rissa tridactyla, the two most frequent followers. Fulmarus glacialis 75°N transect 22 counts NO ICE ICE GLOBAL NO FOG FOG NO FOG FOG A r A r A r A r A r N 2/10 0,20 0/4 0,00 3/7 0,71 0/1* 0,00* 5/22 0,32 N' 5/7 4,86 1/1* 4,00* 1/2* 2,50* 0/1* 0,00* 7/11 3,91 N" 10/10 54,50 4/4 38,00 7/7 24,43 0/1* 0,00* 21/22 39,45 A = X/C = Number of counts where the species is present/ total number of counts r = N/C = Number of birds counted/ total number of counts N: number of birds counted during a count N': flying followers (counted at the end et a count) N": sitting followers (during CTD-stations), after ± 1 hour during which POLARSTERN is on stop position. *: non significant Fulmarus glacialis 79°N transect 16 counts NO ICE ICE GLOBAL NO FOG FOG NO FOG FOG A r A r A r A r A r N 1/5 0,40 0/2* 0,00* 4/9 0,78 0/0* 0,00* 5/16 0,57 N' 4/4 2,25 0/2k 0,00* 6/1 6,29 0/0* 0,00* 10/13 4,08 N" 4/5 7,40 1/2* 2,00* 8/9 11,56 0/0* 0,00* 13/16 9,06 Rissa tridactyla 75°N transect 22 counts NO ICE ICE GLOBAL NO FOG FOG NO FOG FOG A r A r A r A r A r N 1/10 0,10 0/4 0,00 3/6 0,83 1/1* 4,00* 5/21 0,48 N' 3/7 2,28 1/1* 2,00* 0/2* 0,00* 0/1 0,00* 4/11 1,64 N" 8/10 6,10 0/3* 0,00* 5/7 2,14 0/1* 0,00* 13/21 3,62 Rissa tridactyla 79°N transect 16 counts NO ICE ICE GLOBAL NO FOG FOG NO FOG FOG A r A r A r A r A r N 3/5 2,0 0/2* 0,00* 3/9 0,56 0/0* 0,00* 6/16 0,94 N' 2/4 0,75 0/2* 0,00* 6/7 13,43 0/0* 0,00* 8/13 7,46 N" 2/5 1,60 0/2* 0,00* 5/9 4,89 0/0* 0,00* 7/16 3,25 For the Fulmarus glacialis there are, at 750 N, 10 times more flying followers (N') and 100 times more sitting followers (N") than on normal counts (N). The data from all species need to be accurately analysed in order to present a protocol involving all followers. In order to better understand the behaviour of the followers, waves and wind are also factors to take into consideration. 7. PHYTOPLANKTON ECOLOGY AND VERTICAL PARTICLE FLUX O. Haupt, S. Haase The distribution of phytoplankton and the vertical particle flux were the research interests of the phytoplankton working group during ARK XVll-1. The stability of the water column due to sea ice melting and freezing as well as hydrographic conditions of the different water masses in the Nordic Seas and Fram Strait can be correlated with the occurrence of blooms of different phytoplankton species. Also the annual succession of phytoplankton species can be found in the material that sinks down to the sea floor. In order to understand the seasonality as well as the interannual differences of phytoplankton distribution patterns and vertical particle flux, we have collected samples of phytoplankton and related biogeochemical parameters, and deployed sediment traps. A total of 29 stations were sampled on a transect along 75°N, in the ARKTIEF investigation area off East Greenland and in the "Hausgarten" area off Svalbard. At 17 stations on the transect we collected only water from 6 depths between the surface and 75 m for the analysis of chlorophyll to get information about the species succession across the Nordic Seas. At 12 stations on the transect and in the other investigation areas we took samples from the surface down to the sea floor with a water sampler rosette (Niskin bottles) to get data on the vertical distribution of nutrients as well as for the chlorophyll, organic carbon and nitrogen and silicate contents of the particulate material of the water column. Samples for microscopic analyses of the plankton community were also taken with the water sampler and a net on selected stations. We further changed a mooring with two sediment traps and a current meter (Fevi-1 / Fevi-2) at 79° 01,8' N, 04° 20,3' E. The traps were deployed right below the euphotic zone at about 260 m and close to the bottom at about 2310 m. Only investigations by microscope and chlorophyll measurements could be made on board to get first information about the phytoplankton distribution along the transect at 75°N. The data show that chlorophyll concentrations reaches up to 5 pg dm-3 in the centre of the Greenland Sea gyre. Comparing the eastern and the western part of the transect we found that the chlorophyll maximum sinks down from the surface to a depth of about 30 m close to the shelf of East Greenland. Microscopic investigations show that the phytoplankton was dominated by dinoflagelates in the eastern part of the transect which is typical for a summer situation. However, in the western part diatoms played the leading role and the phytoplankton compositions shows typical characteristics for a spring system. More detailed analyses of nutrients and water masses have to be made in Bremerhaven to get a clear picture of the state of the ecosystems in the Greenland Sea. The long term mooring Fevi-1 could have been recovered successfully but results are not available yet. Fig. 12: Chlorophyll distribution at 75°N transect. Abb. 12: Chlorophyllverteilung auf dem 75°N-Schnitt. 8. THE ROLE OF PROTISTS IN THE FOOD WEB OF THE ARCTIC OCEAN M. Werigert, S. Zitzmann Objectives Despite of intensive investigations of the abundances and seasonality of pelagic protists in the Arctic Ocean, the functioning and the role of protists in this ecosystem is poorly understood. As we know from studies in other aquatic systems the impact of heterotrophic protists to the carbon cycling is large. Furthermore protists are highly species-specific within their trophic relationship. The aim of our investigation is to estimate the role of heterotrophic protists as herbivores (ciliates) and bacterivores (flagellates) in the aquatic food web of the Arctic Ocean. Work at Sea We conducted two types of experiments, a "dilution experiment" and a 'tracer experiment", to investigate the role of protists in the arctic ecosystem. The "dilution experiment" should show the grazing pressure from heterotrophic protists on algae, hetero- and autotrophic protists. Therefore natural unfractionated seawater was diluted with particle-free seawater in several steps to reduce the encounter probability between predator and prey. The bacterivory is given by the "tracer experiment". Labeled bacteria (fluorescently-labeled, FLB) were offered as food source for heterotrophic protists. The magnitude of bacterivory will be deduced from the difference in the abundance of the tracer between initial to the end samples. Both types of experiments were incubated under in-situ conditions in two seawater through- flow on-deck incubators for 48 h. The two types of experiments were performed seven times with different water masses from 20 to 35 m depth. To investigate the abundance of bacteria and the bacterivory, filters were made and frozen. Preliminary results Only test-counting took place on board. It resulted, that the bacterial abundance of natural seawater was between 0,2-0,89 *106 bacteria/ml. This abundances correlate with bacteria concentrations found in the literature. To estimate the abundance of ciliates and algae fixed water samples are taken. The main evaluation will occur at the AWI and include: Determination of abundances of autotrophic and heterotrophic protists and bacteria Taxonomic description of the organisms • Determination of concentration of chlorophyll a • Determination of concentration of nutrients • Determination of community growth rates • Determination of community grazing rates • Determination of species-specific growth rates Determination of species- specific grazing rates Direct quantification of bacterivory. 9. DEEP-SEA BIOLOGY S. Brückner, C. Haseniann, K. v. Juterzenka, K. Premke, N. Queric, I Schewe, J. Wegner The aim of this project is to investigate depth related distribution patterns of benthic bacteria and meiofauna. Various biotic parameters are investigated on the background of interannual variability. Sediment samples were taken at a long term depth-transect (1000-5000 m) on the continental margin west off Spitsbergen, crossing the "AWI-Hausgarten" to the Arctic deepest point, the Molloy Deep (Fig. 13). Fig. 13: Schematic representation Molloy Deep and the "Hausgarten" sampling distribution. Abb. 13: Schematische Darstellung von Molloy Deep und die Verteilung der Probennahme im "Hausgarten". Sampling was performed using a multicorer sampling system, allowing the investigation of an undisturbed sediment surface. A total of 10 stations were sampled along this transect. Subsamples for faunistic investigations and for biochemical analyses were taken using 1 ml, 5 ml and 20 ml syringes with cut off anterior ends. Subsamples were sectioned horizontally in 1 cm-layers and analysed separately to investigate gradients within the sediment column. 9.1 Causes and effects of physical, chemical and biological gradients in the deep sea The parameters which are suspected to follow a gradient are mainly abundance, diversity and activity of bacteria and meiofauna, as well as the biogenic sediment composition. To evaluate microbial exoenzymatic activities, esterase turn-over rates were determined with the fluorogenic substrates fluorescein- di-acetate (FDA). Sediment-bound chloroplastic pigment equivalents (CPE) also were determined to quantify organic matter input from primary production. Additional sediment samples were preserved for later investigations in the home laboratory - analysis of phospholipids and proteins will contribute to the assessment of the total microbial biomass and the proportion of sediment bound detrital organic matter. Preliminary results show a distinct depth-gradient for sediment bound plant pigments (Fig. 14) and exoencymatic bacterial activities (Fig. 15). An exception of this gradient are the two stations sampled in the Molloy Deep. In relation to water depth the values for FDA and CPE are increased. A possible explanation for this result might be the special water mass regime above the deep (Fig. 16). A gyre circulation in the deep might keep the products of an increased primary production within the Molloy Deep area. Fig. 14: Concentrations of plant pigments in the sediment-water-interface (0 - 1 cm) along the 'Hausgarten depth-transect. Abb. 14: Konzentrationen der pflanzlichen Pigmente in der Sediment-Wasser Ubergangsschichf (0 - 1 cm) auf dem Schnitt durch den Hausgarten. Fig. 15: Potential exoenzymatic activity of ester-cleaving bacteria in the sediment-water-interface (0-1cm) along the Hausgarten depth-transect. Abb. 15: Potentielle exoenzymatische Aktivität von ester-aufspaltenden Bakterien Pigmente in der Sediment-Wasser-Übergangsschicht (0 - 1 cm) auf dem Schnitt durch den Hausgarten. Fig. 16: Transect of potential temperature, salinity and attenuation across Molloy Deep. Abb. 16: Vertikalschnitt der potentiellen Temperatur, des Salzgehalts und der Licht-Attenuation quer zu Molloy Deep. 9.2 Investigations on the dynamics of benthic bacterial communities and their impact on small-scale heterogeneity patterns of Arctic deep-sea sediments Topographic-geochemical features are connected with the varying occurrence of megafaunal populations, which in turn play an important role for the distribution and for the activity of benthic bacteria. To get an idea about bacterial dynamics in deep-sea sediments, large-scale samples implying the decreasing effects with increasing water depth were compared with small-scale samples with regard to biologically produced habitat structures in terms of bacterial activity, diversity and abundance. The benthos of the Molloy Deep is dominated by holothurians producing tracks, feeding traces and faeces. The sediment there is characterized by small grain sizes. In the sample area of the "Hausgarten" we can find a wide range of bioturbating species creating tubes, burrows sea mounds and other biogenic structures. Bacterial production was measured via dual labeling by means of 14 C leucine and 3H thymidine incorporation. A direct counting, dual staining method was applied to evaluate the proportion of active and inactive bacteria. We found a trend of decreasing microbial activity in sediment surface layer in dependence of an increasing sediment depth as well as water depth. Samples for different molecular analysis were prepared on board for further processing at the institute. 9.3 "Food falls" - natural disturbances at the seafloor of the deep sea The food supply hence energy flow to the benthic deep-sea ecosystem is partly driven by sinking carcasses (food falls). Although of natural origin food falls create small scaled disturbances because they are discrete events with significant implications for the influenced area. Scavenging demersal fishes and invertebrates are attracted in large numbers by food falls. The impact of any food fall is unpredictable both in space and time for benthic or bentho- pelagic scavengers. However, preliminary results of baited time-lapse camera experiments and baited traps carried out in 2000 (ARK XVI/2) and 2001 (ARK XVII/1) indicate that thousands of individuals of the cosmopolitic necrophagous deep-sea amphipod Eurythenes gtyllus appear shortly after bait deployment (Fig. 17). A free-falling lander system was used equipped with a pro-programmed time- lapse camera, flow meter, autonomous scanning sonar system and traps. Five lander deployments each lasting for about 20 hours were scheduled for the centre and vicinity of the deep-sea long-term station (AWI-Hausgarten"). The scanning sonar system recorded signals, which could in combination with the photos of the time laps camera use to find out a preferred direction in the appearance of the amphipods (Fig. 18). The bait in the traps with a weight of about 4 kg (on average) was totally consumed in 20 hours by 800 amphipods per lander deployment. About 3900 amphipods were caught by the traps. 200 organisms were kept alive in a cooled laboratory container on board POLARSTERN and later at the institute for further experiments under controlled conditions. The other 3700 cached amphipods of all deployments will be used for analysing lipid contents, estimate the genetic differences, and for information about the distribution of female and male amphipods. Fig. 17: Time-lapse photograph sequences of bait deployment at 2600 m water depth indicating the rapid consumption of about 3 kg (wet weight) of fish bait by a single amphipod species (Eurythenes giyllus). Abb. 17: Fotosequenz während der Köderausbringung in 2600 m Wassertiefe, die den schnellen Verzehr von etwa 3 kg (Nassgewicht) Fischköder durch eine Amphipodenart (Euiythenes giyllus) zeigt. Fig. 18: Recorded signals of scanning sonar system on the lander, plotted in polar version (01:12 hours in between); the right picture show the incoming individuals to the bait. Abb. 18: Mit dem scannenden Sonar auf dem Lander im Zeitabstand von 1:12 Stunden aufgezeichnete Signale in polarer Projektion. Auf der rechten Abbildung sind die sich dem Köder nähernden Tiere zu erkennen. 10. WATER MASS EXCHANGES BETWEEN THE ARCTIC OCEAN AND THE NORDIC SEAS G. Budéus, E. Fahrbach, V. Ill I. Meyer-Holste, S. Müller, B. Plüger, R. Plugge, S. Ronski, E. Schütt Objectives Exchanges between the North Atlantic and the Arctic Ocean result in the most dramatic water mass conversions in the World Ocean: warm and saline Atlantic waters, flowing through the Nordic Seas into the Arctic Ocean, are modified by cooling and freezing into shallow fresh waters (and ice) and saline deep waters. The outflow from the Nordic Seas to the south provides the initial driving of the global thermohaline circulation cell. The outflow to the north has a major impact on the large scale circulation of the Arctic Ocean. Measurement of these fluxes is a major prerequisite for the quantification of the rate of overturning within the large circulation cells of the Arctic and the Atlantic Oceans, and is also a basic requirement for understanding the role of these ocean areas play in climate variability on interannual to decadal time scales. Fram Strait represents the only deep connection between the Arctic Ocean and the Nordic Seas. Just as the freshwater transport from the Arctic Ocean is thought to be of major influence on water mass formation in the Nordic Seas, the transport of warm and saline Atlantic water significantly affects the water mass characteristics in the Arctic Ocean, The inflow from the Arctic Ocean into the Nordic Seas determines to a large extent the formation of water masses which are advected through Denmark Strait to the south and participate in the formation of the North Atlantic Deep Water. The obtained data will be used, in combination with a regional model, to investigate the nature and origin of the transport fluctuations as well as the modification of signals during their propagation through the strait. The specific objectives are: • to measure the current, temperature and salinity fields on sections across Fram Strait • to determine the characteristic time scales of the fluctuations, in particular, the contribution of the seasonal cycle • to calculate seasonal and annual mean transports of mass, heat and salt • to understand the origin of the fluctuations • to detect the influences of low frequency fluctuations of the transports through Fram Strait on remote variations further south • to detect interanriual variability of the described processes. Polar oceans are generally weakly stratified and hence oceanic currents are primarily determined by the barotropic flow component. Thus, geostrophic calculations based on hydrographic sections are not sufficient to determine the current field to the required accuracy. In these ice-covered areas, the barotropic component can only be determined from direct current measurements, since satellite altimetry is not yet able to supply appropriate measurements of sea level fluctuations under ice. Due to relatively large contributions of boundary and frontal areas and the small Rossby radius of deformation, relatively high horizontal resolution is required for the measurements. However, measurements with bottom pressure recorders might allow to obtain transport estimates, if they are properly calibrated against a current meter array. The net transport through Fram Strait is the difference between the northward flowing West Spitsbergen Current in the east and the southward flowing East Greenland Current in the west. A significant recirculation from of water from Atlantic origin occurs in several current branches south, in and north of Fram Strait. To estimate the intensity of the recirculation on the zonal transect across the strait a meridional transect is needed at the Greenwich Meridian. Work at Sea To measure the current field between East Greenland and West Spitsbergen, actually 14 mooring arrays are deployed across Fram Strait at 79°N, in water depths between 200 m and 2600 m water depth. For a sufficient vertical resolution, 3 to 4 instruments per mooring are required. Temperatures and salinities are measured together with the currents, to allow derivation of the heat and salt transports. Three of the moorings on the eastern side of the mooring array were recovered and redeployed with bottom pressure recorders (see tables). Salinity sensors on moored instruments still suffer from uncertainties and are too expensive to be deployed in a large number. Therefore CTD stations (Fig. 2) are conducted across Fram Strait from the Spitsbergen shelf to the East Greenland shelf to ensure calibration of the moored instruments and to supply much higher spatial resolution. The transect did not reach the Greenland coast, but ended at 79°N 11°47'W due to the ice conditions which would have required more time to reach the fast ice edge than available. To determine the different branches of the Atlantic Water entering the Arctic Ocean a transect was made from the northwestern corner of Spitsbergen to the northwest across the southern part of Sofia Deep At the western slope of Sofia Deep the transect veered to the southwest and reached the Greenwich Meridian at 79°40'N. From there, it went approximately south, but was adapted to the ice conditions. The meas-urements ended on the way south to Tromso at 75°15'N 00°00'. However the horizontal station distance had to be increased up to 30 nm in the deep basins. Preliminary Results The CTD section (Figs. 2 and 19) across Frani Strait from the Spitsbergen shelf to the East Greenland shelf did show the expected water mass distribution with warm saline water of Atlantic origin on the eastern side in the West Spitsbergen Current and colder and less saline in the southward return flow on the western side. Cold and low saline Polar Water was observed on the western side and over the east Greenland shelf. Since the transect did not reach the Greenland coast, the recirculation on the shelf could not be determined. The different branches of the Atlantic Water entering the Arctic Ocean were detected an a transect from the northwestern corner of Spitsbergen to the northwest across the southern part of Sofia Deep (Figs. 2 and 20) and on the western slope of Sofia Deep (Figs. 2 and 21). On the Greenwich Meridian the recirculation front was encountered at 79°N. The long term development of the water mass properties is shown in Fig. 22. Mean temperatures and salinities are given for two depth levels (5 to 30 m and 50 to 500 m). Horizontally three areas are distinguished: the West Spitsbergen Current (WSC), between the shelf edge and 5° E, the Return Atlantic Current (RAC) between 3°W and 5°E and Polar Water in the East Greenland Current (EGC) between 3°W and the Greenland shelf. It has to be noted that the data from Fram Strait are scattered from spring to autumn and consequently affected by the annual cycle which is most pronounced in the upper layers. Therefore, the observation time indicated in the figure has to be taken into account. 11. ACKNOWLEDGEMENT The achievements during the cruise were only possible because of an effective and heartful cooperation between the ship's crew and the scientific party. We are grateful to Master Dr. Boche and his crew for another example of the traditionally good cooperation on board. We want to thank as well to all those, even if we are not able to call them all by name, who contributed to the success of the cruise by their support on shore during planning, preparation and while we have been at sea. Fig. 19: Transect of potential temperature and salinity across Fram Strait along 79°00'N in the west and 78°50'N in the east. For locations of stations see Fig. 2. Abb. 19: Vertikalschnitt der potentiellen Temperatur und des Salzgehalts durch die Framstraße auf 79°00'N im Westen und auf 78°50'N im Osten. Zur Lage des Schnitts, siehe Abb. 2. Fig. 20: Transect of potential temperature and salinity north of Fram Strait crossing the flow of Atlantic Water north of Spitsbergen. For locations of stations see Fig. 2. Abb. 20: Vertikalschnitt der potentiellen Temperatur und das Salzgehalts nördlich der Framstraße, um den Strom von Atlantischem Wasser nördlich von Spitzbergen zu erfassen. Zur Lage des Schnitts, siehe Abb. 2. Fig. 21: Transect of potential temperature and salinity across Fram Strait from the southern end of Yermak Plateau to the Greenwich Meridian and along it up to 75°00'N. For locations of stations see Fig. 2. Abb. 21: Vertikalschnitt der potentiellen Temperatur und des Salzgehalts durch die Framstraße vom südlichen Rand des Yermakplateaus zum Meridian von Greenwich und entlang ihm bis 75°00N. Zur Lage des Schnitts, siehe Abb. 2. 1980: Ymer (22,08 - 27.08) West Spitsbergun Current (VSC): 1953: Lance (24.06 -27.06) ♦ mean temperature and salinity be- 1984: Lance (26.08 -29.08) tween5°E and eastern shelf edge. 1988: Polarstern (24.06 -29.06) 1993: Lance (16.08 -27.08) Return Atlantic Current (RAC): 1997: Lance (23.08 -17.09) o mean temperature and salinity 1998: Polarstern (01.09 - 09.09) between 3°W and 5°E. 1999: Polarstern (13.09 -24.09) 2000: Lance (29.08 - 02.09) ♦ East Greenland Current (EGC): 2001: Polarstern (18.07 -23.07) mean temperature and salinity be- tween western shelf edge and 3°W. Fig. 22: Mean potential temperature and salinity of the Atlantic Water in Fram Strait on transect from 1984 to 2001. Abb. 22: Mittlere potentiellen Temperatur und des Salzgehalts des Atlantikwassers in der Framstraße bestimmt mit hydrographischen Schnitten von 1984 bis 2001. Moorings recovered in Fram Strait during ARKXVI1/1, Verankerungen die während ARKXVII/1 in der Framstral3e aufgenommen wurden Recovered moorings Date & Time Record Mooring Latitude (UTC) of 1st Water Inst. Inst. Inst. length name Longitude record depth Type Ser. # Depth (days) ------- --------- ------------- ------ --------- ------ ------ ------ F 2-4 78°50.37N 18 Aug. 2000, 794 m FSI ACM 1557 56 m 348 08°18.35E 12:48 SBE37 212 57 m 348 AVTC 9402 259 m 348 AVT 9767 785 m 188 SBE 16 1253 786 m 348 F 6-4 78°50.01N 04 Aug. 2000, 2637 m FSI ACM 1562 59 m 362 05°02.53E 15.21 SBE 37 217 60 m 362 AVTPC 10872 262 m 362 AVT 9187 1518 m 362 AVT 9185 2634 m 362 SBE26 258 2637 m 362 F 8-3 78°50.00N 06 Aug. 2000, 2470 m FSI ACM 1564 60 m 360 02°33.70E 08:22 SBE 37 221 61 m 360 AVTP 8417 143 m 360 AVTP 11888 249 m 360 AVTPC 11613 750 m 360 AVTP 9786 1506 m 360 AVT 9782 2462 m 360 FEVI 1 79°01.70N 19 Aug. 2000, 2456 m Sed. trap 256 m 320 04°20.86E 22:05 Sed. trap 2286 m 0 AVT 10873 2441 m 347 Abkürzungen / Abbreviations: FSI-ACM Falmouth Scientific 3-dimension acoustic current meter with temperature and pressure sensor AVTPC Aanderaa current meter with temperature, pressure, and conductivity sensor AVTC Aanderaa current meter with temperature and conductivity sensor AVTP Aanderaa current meter with temperature and pressure sensor AVT Aanderaa current meter with temperature sensor SBE 16 SeaBird Electronics self contained CTD, type: SeaCat SBE 26 SeaBird Electronics high resolution water level recorder SBE 37 SeaBird Electronics MicroCat CT recorder Sed. Trap Salzgitter Electronics SZE Sediment trap Moorings deployed in Fram Strait during ARKXVII/1. Verankerungen, die während ARKXVII/1 in der Framstraße ausgelegt wurden. Deployed moorings Date & Time Mooring Latitude (UTC) of Water Inst. Inst. Inst. name Longitude deployment depth Type Ser. # Depth ------- --------- ------------- ------ --------- ------ ------ F2-5 78°50.35N l2 July 200l, 794 m ACM/CTD 1471 57 m 08°18.30E 15:54 SBE 37 449 58 m AVTP 8418 262 m SBE37 219 782 m AVT 10495 788 m SBE 26 225 794 m F6-5 78°49.95N 15 July 2001, 2628 m ACM/CTD 1449 52 m 05°02.55E 17:15 SBE 37 445 53 m AVTPC 8400 248 m AVTPC 12326 1504 m AVTPC 12330 2620 m SBE26 259 2626 m F8-4 78°50.05N l7 July 200l, 2470 m AVTP 10005 59 m 02°33.83E 18:11 SEE 37 446 61 m AVTPC 8401 145 m AVTP 8402 251 m AVTPC 8396 752 m AVTPC 12328 1508 m AVT 10532 2464 m SBE 26 261 2470 m FEVI 2 79°01.80N 14 July 2001, 2482 m Sed. trap 259 m 04°20.30E 11:46 Sed. trap 2310 m AVT 10496 2466 m Abkürzungen / Abbreviations: ACM-CTD Falmouth Scientific 3-dimension acoustic current meter with CTD sensor head (CTD=Conductivity, Temperature, Depth) AVTPC Aanderaa current meter with temperature, pressure, and conductivity sensor AVTP Aanderaa current meter with temperature and pressure sensor AVT Aanderaa current meter with temperature sensor SBE 26 SeaBird Electronics high resolution water level recorder SBE 37 SeaBird Electronics MicroCat CT recorder Sed. Trap Salzgitter Electronics SZE Sediment trap 12. BETEILIGTE INSTITUTIONEN / PARTICIPATING INSTITUTIONS Stiftung Alfred-Wegener- AWI Institut für Polar- und Meeresforschung Columbusstral3e D-27568 Bremerhaven Deutscher Wetterdienst DWD Geschäftsfeld Seeschiffahrt Jenfelder Allee 70 A D-22043 Hamburg Motoren- und Turbinen-Union MTU Friedrichshafen GmbH Stützpunkt Hamburg Färsterkamp 9 21149 Hamburg OKTOPUS OKTOPUS Wischhofstr. 1-3 D-24148 Kiel Free University of Brussels VUB Pleinlaan 2 B-1050 Brussels Belgium 13. FAHRTTELNEHMER / PARTICIPANTS Ahke, Astrid AWI Brückner, Sarah AWI Budeus, Gereon AWI Buldt, Klaus DWD Dickmann, Miriam AWI Fahrbach, Eberhard AWI Haase, Susann AWI Hasemann, Christiane AWI Haupt, Olaf AWI Höft, Lars MTU Hohmann, Constanze AWI Kierdorf, Christoph AWI Lüer, Vanessa AWI Matthießen, Jens AWI Meyer-Holste, Ina AWI Möller, Hans-Joachim DWD Müller, Sebastian AWI Pflüger, Borge AWI Flugge, Rainer AWI Premke, Katrin AWI Quöric, Nadja-Valerie AWI Renneberg, Tom AWI Rießbeck, Gerhard Ronski, Stephanie AWI Saveyn, Bert VUB Schewe, Ingo AWI Schott, Thorsten OKTOPUS Schütt, Ekkehard AWI Tahon, Jacques VUB Van Mol, Barbara VUB Vernale ken, Jutta AWI Von Juterzenka, Karen AWI Wegner, Jan AWI Wengert, Melanie AWI Zitzmann, Sybille AWI 14. SCHIFFSPERSONAL / SHIP'S CREW Master Boche, Martin 1. Offc. Grundmann, Uwe Ch. Eng. Schulz, Volker 1. Offc. Rodewald, Martin 2. Offc. Fallei, Holger 2. Offc. Peine, Lutz G. Doctor Kohlberg, Eberhard A. Off ic. Hecht, Andreas 1. Eng. Delff, Wolfgang 2. Eng. Krüger, Michael 2. Eng. Simon, Wolfgang Electron. Baier, Ulrich Electron. Bohlmann, Harald Electron. Fröb, Martin Electron. Holtz, Hartmut Electron. Piskorzynski, Andreas Boatsw. Loidl, Reiner Carpenter Neisner, Winfried A. B. Bäcker, Andreas A. B. Bastigkeit, Kai A. B. Guse, Hartmut A. B. Hagemann, Manfred A. B. Hartwig Andreas A. B. Moser, Siegfried A. B. Schmidt, Uwe A. B. Winkler, Michael Storek. Beth, Detlef Mot-man Arias Iglesias, Enr. Mot-man Dinse, Horst Mot-man Emmrich, Andreas Mot-man Fritz, Günter Mot-man Krösche, Eckhard Cook Fischer, Matthias Cooksmate Martens, Michael Cooksmate Tupy, Mario 1. Stwdess Dinse, Petra 1. Stwdess Streit, Christina Stwdess/Kr Brendel, Christina 2. Stwdess Deuß, Stefanie 2. Stwdess Schmidt, Maria 2. Steward Tu, Jian-Min 2. Steward Wu, Chi Lung Laundrym. Yu, Chung Leung 15. STATIONSLISTE / STATION LIST Date Station Nr. Time Latitude Longitude Depth Operation (UTC) (m) 23.06.01 PS59/001 17:44 72°05.0'N 10°00.0'E 2365 CTD 19:20 72°04.7'N 09°59.8'E 2369 24.06.01 PS59/002 12:08 74°57.3'N 15°43.0'E 500 MUC 12:38 74°57.3'N 15°42.9'E 514 PS59/003 14:25 75°00.0'N 15°49.8'E 268 CTD 14:38 75°00.0'N 15°50.0'E 264 PS59/004-1 16:10 75°00.0'N 15°10.0'E 1021 CTD 16:48 75°00.0'N 15°10.2'E 1014 PS59/004-2 16:55 75°00.0'N 15°10.6'E 1007 OFOS 18:47 75°00.0'N 15°08.9'E 1006 PS59/005 20:05 75°00.0'N 14°31.3'E 1423 CTD 20:55 75°00.0'N 14°31.3'E 1421 PS59/006 22:17 75°00.0'N 13°52.4'E 1803 CTD 23:20 74°54.7'N 13°52.3'E 1814 25.06.01 PS59/007 00:43 75°00.0'N 13°12.2'E 2020 CTD 01:51 74°59.8'N 13°12.0'E 2024 PS59/008 03:05 75°00.0'N 12°34.9'E 2183 CTD 04:19 75°10.2'N 12°34.7'E 2181 PS59/009 05:43 75°00.0'N 11°56.0'E 2335 CTD 07:02 75°00.1'N 11°56.4'E 2334 PS59/010 08:25 75°00.0'N 11°19.0'E 2455 CTD 09:44 74°59.4'N 11°20.8'E 2457 PS59/011 11:13 74°59.9'N 10°39.4'E 2455 CTD 12:31 75°00.0'N 10°39.4'E 2537 PS59/012 13:39 75°00.0'N 10°00.1'E 2580 CTD 15:01 74°59.6'N 10°00.4'E 2587 PS59/013 16:18 75°00.0'N 09°22.0'E 2601 CTD 17:41 75°00.2'N 09°20.7'E 2606 PS59/014 18:50 75°00.0'N 08°43.8'E 2673 CTD 20:15 75°00.5'N 08°43.2'E 2673 PS59/015 21:30 75°00.0'N 08°05.1'E 3544 CTD 23:20 75°00.0'N 08°04.8'E 3545 26.06.01 PS59/016 00:37 75°00.0'N 07°25.7'E 2487 CTD 01:55 75°00.1'N 07°25.2'E 2489 PS59/017 03:11 75°00.0'N 06°47.4'E 2259 CTD 04:21 75°00.1'N 06°47.4'E 2251 PS59/018 05:39 75°00.0'N 06°08.2'E 2846 CTD 07:17 74°59.9'N 06°07.2'E 2886 PS59/019 08:30 74°59.9'N 05°29.7'E 3118 CTD 10:15 74°59.9'N 05°29.0'E 3109 PS59/020 11:30 75°00.0'N 04°52.2'E 3241 CTD 13:12 75°00.4'N 04°52.5'E 3245 PS59/021 14:31 75°00.0'N 04°13.9'E 3112 CTD 16:07 74°59.7'N 04°15.2'E 3276 PS59/022 17:30 74°59.9'N 03°35.4'E 3496 CTD 19:20 75°00.2'N 03°07.2'E 3524 PS59/023 20:42 74°59.9'N 02°55.4'E 2533 CTD 22:00 75°00.0'N 02°54.2'E 2531 PS59/024 23:15 74°59.9'N 02°17.2'E 2956 CTD 27.06.01 00:51 74°59.8'N 02°17.7'E 2959 PS59/025 02:14 75°00.0'N 01°37.8'E 3189 CTD 03:50 75°00.0'N 01°37.6'E 3222 PS59/026 05:05 74°59.9'N 00°59.5'E 3790 CTD 07:01 74°59.7'N 00°58.9'E 3785 PS59/027 08:15 75°00.0'N 00°21.6'E 3778 CTD 10:10 75°00.0'N 00°23.2'E 3779 PS59/028-1 11:16 74°52.6'N 00°10.8'E 3777 CTD 13:10 74°52.9'N 00°11.2'E 3779 PS59/028-2 12:32 74°52.9'N 00°10.9'E 3780 HN 12:56 74°52.9'N 00°10.9'E 3780 PS59/029 13:39 74°50.1'N 00°10.0'E 3779 CTD 15:36 74°50.4'N 00°9.2'E 3780 PS59/030 16:00 74°47.6'N 00°10.1'E 3776 CTD 18:04 74°48.0'N 00°8.9'E 3782 PS59/031 18:46 74°51.4'N 00°24.6'E 3791 CTD 20:48 74°51.0'N 00°23.7'E 3782 PS59/032 21:32 74°55.0'N 00°10.5'E 3782 CTD 23:33 74°55.4'N 00°12.7'E 3782 28.06.01 PS59/033 00:44 75°00.1'N 00°18.1'W 3771 CTD 02:59 75°00.3'N 00°17.6'W 3769 PS59/034 04:20 75°00.0'N 00°56.4'W 3728 CTD 06:16 75°00.0'N 00°55.9'W 3728 PS59/035 07:31 75°00.0'N 01°35.1'W 3740 CTD 09:35 74°59.2'N 01°35.3'W 3736 PS59/036 10:45 74°59.9'N 02°12.8'W 3653 CTD 12:46 75°00.8'N 02°12.6'W 3568 PS59/037-1 14:25 74°49.9'N 02°30.9'W 3700 J010 Aufnahme 16:32 74°50.2'N 02°31.4'W 3706 PS59/037-2 16:55 74°50.3'N 02°29.6'W 3707 J013 Auslegung 18:50 74°50.0'N 02°30.1'W 3703 PS59/038 20:19 75°00.0'N 02°51.2'W 3700 CTD 22:23 75°00.0'N 02°50.7'W 3705 PS59/039 23:41 75°00.0'N 03°29.6'W 3672 CTD 29.06.01 01:35 75°00.1'N 03°29.0'W 3674 PS59/040 02:52 75°00.0'N 04°07.9'W 3646 CTD 04:50 74°59.3'N 04°08.2'W 3651 PS59/041 06:23 75°05.0'N 03°27.0'W 3677 J012 Ausbringung 07:56 75°05.0'N 03°27.0'W 3683 PS59/042-1 09:51 74°54.9'N 04°37.7'W 3624 J009 Aufnahme 11:23 74°55.2'N 04°37.3'W 3625 PS59/042-2 11:29 74°55.2'N 04°37.4'W 3623 CTD 13:23 74°55.7'N 04°39.5'W 3624 PS59/042-3 13:43 74°55.1'N 04°36.9'W 3619 J011 Auslegung 15:27 74°55.0'N 04°38.1'W 3624 PS59/043 16:14 74°59.9'N 04°47.1'W 3620 CTD 18:07 75°00.1'N 04°47.9'W 3620 PS59/044 19:16 75°10.0'N 05°25.1'W 3585 CTD 21:11 75°00.3'N 05°28.8'W 3585 PS59/045 22:23 75°00.0'N 06°04.0'W 3534 CTD 30.06.01 00:24 75°00.7'N 06°04.1'W 3539 PS59/046 01:42 75°00.0'N 06°43.0'W 3496 CTD 03:38 74°59.9'N 06°43.7'W 3497 PS59/047 04:53 74°59.9'N 07°21.9'W 3447 CTD 06:43 75°00.0'N 07°22.7'W 3447 PS59/048 07:55 75°00.0'N 08°00.9'W 3404 CTD 09:47 74°59.6'N 08°01.5'W 3404 PS59/049 13:07 74°59.9'N 08°40.0'W 3366 CTD 14:56 74°59.6'N 08°38.9'W 3368 PS59/050 16:02 75°00.0'N 09°18.8'W 3301 CTD 17:45 74°59.6'N 09°17.8'W 3311 PS59/051 19:02 75°00.0'N 09°57.0'W 3226 CTD 20:44 75°00.0'N 09°56.4'W 3224 PS59/052 22:03 75°00.0'N 10°36.2'W 3078 CTD 23:39 74°59.8'N 10°34.9'W 3085 1.07.01 PS59/053 00:38 75°00.0'N 11°02.1'W 2742 CTD 02:03 74°59.8'N 11°01.7'W 2764 PS59/054 03:02 75°00.0'N 11°27.9'W 2346 CTD 04:19 74°59.8'N 11°26.8'W 2378 PS59/055 05:23 74°59.8'N 11°49.2'W 1972 CTD 06:25 74°59.2'N 11°48.4'W 2015 PS59/056 07:35 75°00.5'N 12°11.4'W 1453 CTD 08:23 75°00.2'N 12°11.0'W 1486 PS591057 09:20 74°59.9'N 12°20.0'W 1298 CTD 09:53 74°59.7'N 12°19.0'W 1338 PS59/058 10:43 74°59.8'N 12°30.4'W 1051 CTD 11:17 74°59.5'N 12°29.9'W 1085 PS59/059 12:08 74°59.9'N 12°43.8'W 636 CTD 12:29 74°59.8'N 12°43.6'W 670 P359/060 13:33 74°59.7'N 13°09.5'W 249 CTD 13:46 74°59.6'N 13°09.1'W 255 PS59/061 15:08 74°59.9'N 13°39.9'W 201 CTD 15:17 74°59.9'N 13°39.7'W 201 PS59/062 17:13 74°57.3'N 14°21.8'W 178 CTD 17:24 74°57.3'N 14°21.7'W 178 3.07.01 P359/063 16:35 74°07.7'N 12°08.1'W 2883 CTD Jo-Jo 22:02 74°11.5'N 12°09.2'W 2989 PS59/064 22:50 74°07.1'N 12°08.1'W 2885 MUC 4.07.01 00:43 74°07.1'N 12°08.5'W 2883 PS59/065 02:24 74°07.0'N 12°08.8'W 2882 OFOS 08:58 74°10.5'N 12°06.1'W 2980 PS59/066 09:29 74°09.6'N 12°06.1'W 2995 MUC 11:24 74°09.5'N 12°06.0'W 2996 P359/067 20:45 74°09.9'N 11°22.9'W 2951 CTD 5.07.01 02:40 74°13.1'N 11°33.5'W 3009 PS59/068 03:10 74°11.2'N 11°27.0'W 3076 MUC 05:10 74°11.0'N 11°26.8'W 3079 PS59/069 05:35 74°09.8'N 11°22.5'W 2951 OFOS 10:37 74°11.5'N 11°26.8'W 3081 PS59/070-1 11:05 74°13.3'N 11°33.8'W 3010 MUC 12:59 74°13.1'N 11°33.0'W 3012 PS59/070-2 13:20 74°13.1'N 11°32.9'W 3012 GKG 14:39 74°13.3'N 11°30.5'W 3017 PS59/070-3 15:09 74°13.0'N 11°34.5'W 3008 SL 16:23 74°13.1'N 11°32.7'W 3014 PS59/071-1 17:00 74°11.1'N 11°27.2'W 3077 SL 18:10 74°11.1'N 11°27.1'W 3078 PS59/071-2 18:47 74°11.7'N 11°26.2'W 3067 AGT 22:57 74°10.1'N 11°33.9'W 3063 6.07.01 PS59/072 08:27 74°30.1'N 10°58.5'W 3130 MUC 10:26 74°29.7'N 10°58.0'W 3133 PS59/073 11:24 74°34.0'N 10°55.8'W 3155 OFOS 16:13 74°31.3'N 10°57.2'W 3137 PS59/074-1 16:35 74°30.1'N 10°58.4'W 3132 GKG 18:05 74°29.5'N 10°56.1'W 3137 PS59/074-2 18:32 74°30.3'N 10°59.7'W 3130 SL 19:48 74°29.7'N 10°58.4'W 3133 PS59/075 22:32 74°25.3'N 10°15.5'W 3198 CTD 7.07.01 04:12 74°21.4'N 10°14.3'W 3145 PS59/076-1 04:58 74°24.5'N 10°15.7'W 3217 MUC 07:00 74°24.5'N 10°16.1'W 3215 PS59/076-2 07:11 74°24.5'N 10°15.7'W 3217 GKG 08:30 74°84.2'N 10°16.3'W 3200 PS59/076-3 09:05 74°24.5'N 10°15.9'W 3217 SL 10:17 74°24.3'N 10°15.1'W 3224 PS59/076.4 10:39 74°24.5'N 10°16.1'W 3218 SL 11:53 74°24.4'N 10°15.5'W 3218 P559/077-1 12:50 74°21.8'N 10°16.0'W 3139 SL 14:07 74°21.7'N 10°16.1'W 3138 PS59/077-2 14:24 74°21.7'N 10°15.8'W 3138 GKG 15:49 74°21.6'N 10°15.4'W 3139 PS59/078 16:30 74°22.1'N 10°15.5'W 3141 OFOS 23:37 74°25.5'N 10°15.8'W 3189 PS59/079 23:57 74°25.3'N 10°15.6'W 3193 MUC 8.07.01 01:44 74°24.8'N 10°13.7'W 3214 PS59/080 02:08 74°24.5'N 10°16.0'W 3217 CTD 03:54 74°24.2'N 10°14.2'W 3218 PS59/081-1 04:38 74°24.3'N 10°23.3'W 3202 ACT 08:40 74°24.0'N 10°32.2'W 3192 PS59/081-2 09:30 74°24.4'N 10°23.6'W 3205 CTD 11:25 74°24.0'N 10°20.4'W 3207 PS59/082-1 18:04 74°15.0'N 09°33.8'W 3235 MUC 20:05 74°15.0'N 09°34.0'W 3234 PS59/082-2 20:22 74°15.0'N 09°34.1'W 3236 GKC 21:50 74°15.0'N 09°34.2'W 3235 PS59/082-3 22:14 74°15.0'N 09°34.1'W 3235 SL 23:37 74°15.0'N 09°33.4'W 3237 9.17.01 PS59/082-4 00:17 74°15.1'N 09°33.0'W 3236 OFOS 05:53 74°16.8'N 09°33.1'W 3236 PS59/083 18:50 74°45.6'N 08°53.7'W 3321 CTD 10.07.01 00:20 74°48.6'N 08°59.7'W 3325 PS59/084-1 01:03 74°45.7'N 08°53.9'W 3325 MUC 03:14 74°45.7'N 08°54.3'W 3324 PS59/084-2 03:29 74°45.7'N 08°54.4'W 3322 OFOS 08:23 74°47.4'N 08°57.7'W 3328 PS59/085-1 09:09 74°47.9'N 08°57.6'W 3325 MUC 11:14 74°47.9'N 08°57.9'W 3324 PS59/0852 11:29 74°47.9'N 08°57.9'W 3324 GKG 13:00 74°48.0'N 08°57.9'W 3325 PS59/085-3 13:22 74°47.9'N 08°57.9'W 3325 SL 14:47 74°47.8'N 08°58.0'W 3325 PS59/086-1 15:26 74°46.6'N 08°55.5'W 3373 GKG 17:04 74°46.7'N 08°55.8'W 3395 PS59/086-2 17:18 74°46.7'N 08°55.6'W 3390 MUC 19:27 74°46.7'N 08°55.8'W 3395 12.07.01 PS59/087 06:15 78°30.0'N 06°36.2'E 2644 LANDER PS59/088 10:50 78°45.0'N 08°20.3'E 818 ACT 13:09 78°46.4'N 08°20.9'E 782 PS59/089 13:53 78°50.2'N 08°18.3'E 816 Verankerung P2-4 14:48 78°50.2'N 08°18.5'E 812 15:06 78°50.4'N 08°18.4'E 816 Verankerung F2-S 15:54 78°50.4'N 08°18.3'E 819 PS59/090 17:04 78°45.2'N 08°49.0'E 422 ACT 18:18 78°46.5'N 08°44.6'E 398 PS59/91 22:45 79°08.0'N 06°05.0'E 1283 MUC 23:42 79°08.0'N 06°04.0'E 1283 13.07.01 PS59/92 02:11 79°04.1'N 04°19.9'E 2356 CTD 03:29 79°04.3'N 04°19.1'E 2350 PS59/93 08:34 78°30.3'N 06°36.1'E 2630 LANDER Aufnahme 10:20 78°31.1'N 06°34.9'E 2511 PS59/94 15:23 79°04.0'N 04°10.9'E 2465 MUC 16:58 79°04.4'N 04°09.9'E 2468 PS59/95 19:53 78°50.5'N 05°52.0'E 2524 LANDER B Auslegung PS59/96 22:15 79°08.1'N 04°54.5'E 1518 MUC 23:16 79°08.2'N 04°54.2'W 1520 PS59/97 23:46 79°10.1'N 04°43.8'E 1494 ECHO PINCER 14.07.01 PS59/98 00:33 79°06.1'N 04°14.5'E 2268 ECHO PINCER PS59/99 00:52 79°06.0'N 04°09.3'E 2389 ECHO PINCER PS59/100 04:10 79°07.4'N 04°35.7'E 1701 MUC 05:29 79°07.6'N 04°35.5'E 1978 PS59/100-1 05:36 79°07.7'N 04°35.4'E 2023 MUC 06:59 79°08.0'N 04°35.5'E 2017 PS59/101 08:00 79°01.8'N 04°20.5'E 2549 FEVI-1 Aufnahme 09:50 79°02.5'N 04°16.4'E 2532 PS59/101-1 10:20 79°01.5'N 04°21.3'E 2547 FEVl-2 Auslegung 11:46 79°01.8'N 04°20.3'E 2499 PS59/102 14:25 78°50.6'N 05°53.0'E 2521 LANDER B Aufnahme 15:49 78°50.5'N 05°52.9'E 2523 PS59/103 20:08 79°04.1'N 03°43.1'E 2903 MUC 21:58 79°04.0'N 03°41.7'E 2989 PS59/104 23:00 79°04.0'N 04°19.9'E 2368 LANDER C Auslegung 15.07.01 PS59/105 00:07 79°05.0'N 03°36.6'E 3276 MUC 02:11 79°05.0'N 03°35.4'E 3383 PS59/106 11:22 78°49.9'N 05°02.9'E 2694 VERANKERUNG Aufnahme F6-4 15:08 78°48.9'N 05°00.0'E 2675 PS59/106-1 15:53 78°50.0'N 05°02.5'E 2699 VERANKERUNG Auslegung F6-5 17:15 78°50.0'N 05°02.6'E 2700 PS59/107 19:21 79°04.5'N 04°19.1'E 2377 LANDER C Aufnahme 20:35 79°04.3'N 04°16.4'E 2394 PS59/105 21:53 79°04.0'N 03°29.7'E 3963 MUC 16.07.01 00:23 79°04.0'N 03°28.7'E 4004 PS59/109 02:33 79°17.5'N 02°55.4'E 3391 CTD 04:12 79°17.6'N 02°53.8'E 3489 PS59/110 04:41 79°20.0'N 02°58.2'E 2021 CTD 05:49 79°20.0'N 02°57.7'E 2071 PS59/111 06:15 79°22.0'N 03°00.0'E 1531 CTD 07:09 79°22.1'N 02°59.8'E 1505 PS59/111-1 07:42 79°21.8'N 02°59.2'E 1478 LANDER D Auslegung PS59/112 12:11 78°50.0'N 02°33.5'E 2529 MUC 14:20 78°50.0'N 02°33.5'E 2533 PS59/113 16:24 79°04.1'N 03°21.4'E 4981 CTD 19:30 79°04.2'N 03°19.8'E 5210 PS59/114 20:24 79°07.5'N 02°47.1'E 5506 GTD 22:48 79°07.5'N 02°47.2'E 5510 PS59/115 23:22 79°10.0'N 02°48.9'W 5571 CTD 17.07.01 02:03 79°10.2'N 02°45.1'E 5513 PS59/116 02:33 79°12.7'N 02°50.6'E 5258 CTD 05:11 79°13.0'N 02°49.1'E 5260 PS59/117 06:00 79°15.0'N 02°53.4'E 4360 CTD 08:00 79°15.O'N 02°53.5'E 4365 PS59/118 08:59 79°22.0'N 02°59.7'E 1505 LANDER D Aufnahme 10:18 79°21.7'N 02°58.2'E 1510 PS59/119 13:58 78°49.9'N 02°34.1'E 2528 VERANKERUNG Aufnahme E8-3 16:34 78°50.0'N 02°34.1'E 2517 VERANKERUNG Auslegung F8-4 18:11 78°50.1'N 02°33.8'E 2524 PS59/120 18:42 78°50.1'N 02°41.9'E 2504 LANDER E Auslegung PS59/121 21:06 79°08.1'N 02°54.4'E 5576 MUC 18.07.01 00:38 79°08.5'N 02°54.3'E 5576 PS59/122 01:20 79°05.1'N 02°44.4'E 5018 GTD 03:32 79°05.3'N 02°45.0'E 5179 PS59/123 04:08 79°02.4'N 02°41.8'E 3591 CTD 05:50 79°01.8'N 02°41.4'E 3152 PS59/124 06:16 79°00.0'N 02°39.2'E 2450 CTD 07:26 78°59.8'N 02°37.9'E 2445 PS59/125 08:55 79°11.9'N 02°35.2'E 5401 MUC 12:10 79°12.0'N 02°32.8'E 5397 PS59/126 15:27 73°57.4'N 00°27.2'E 2589 CTD 17:09 78°56.6'N 00°24.0'E 2582 PS59/127 18:46 78°55.0'N 01°12.0'E 2560 CTD 20:06 78°55.1'N 01°12.4'E 2559 PS59/128 21:20 78°52.5'N 01°57.0'W 2546 CTD 22:33 78°52.5'N 01°56.9'E 2545 PS59/129-1 23:50 78°50.1'N 02°42.2'E 2508 LA'ND'ER 19.07.01 01:32 78°50.5'N 02°41.9'E 2506 PS59/129-2 01:52 78°50.1'N 02°41.1'E 2510 CTD 03:05 78°50.5'N 02°40.9'W 2510 PS59/130 04:06 78°50.1'N 03°19.0'E 2399 CTD 05:23 78°50.4'N 03°19.0'E 2394 PS59/131 06:22 78°49.9'N 03°54.9'E 2321 CTD 07:33 78°49.9'N 03°54.8'E 2320 PS59/132 09:27 79°04.0'N 04°20.0'E 2379 CTD 10:47 79°04.1'N 04°17.1'E 2401 PS59/133 11:20 79°06.0'N 04°33.6'E 2092 LANDER F geslipt PS59/134 13:34 78°50.0'N 04°54.9'E 2619 CTD 14:59 78°50.0'N 04°55.1'E 2614 PS59/135 16:33 78°50.0'N 06°02.7'E 2451 CTD 17:51 78°50.0'N 06°03.1'E 2445 PS59/136 18:28 78°50.0'N 06°26.7'E 2054 CTD 19:32 78°49.9'N 06°26.8'E 2056 PS59/137 20:16 78°49.9'N 06°51.3'E 1602 CTD 21:09 78°49.8'N 06°50.1'E 1634 PS59/138 22:00 78°50.0'N 07°21.7'E 1231 CTD 22:39 78°49.9'N 07°21.2'E 1234 PS59/139 23:27 78°50.0'N 07°51.4'E 1086 CTD 20.07.01 00:03 78°50.4'N 07°52.8'E 1085 PS59/140 00:40 78°50.0'N 08°13.7'E 893 CTD 01:12 78°50.4'N 08°13.6'E 896 PS59/141 01:55 78°50.1'N 08°35.2'E 430 CTD 02:13 78°50.2'N 08°35.0'E 441 PS59/142 02:54 78°49.9'N 09°00.2'E 217 CTD 03:04 78°49.9'N 09°00.2'E 215 PS59/143 03:52 78°50.0'N 09°30.1'E 172 CTD 04:01 78°50.0'N 09°30.0'E 173 PS59/144 04:58 78°50.0'N 10°00.3'E 69 CTD 05:05 78°50.0'N 10°00.3'E 69 PS59/145 13:38 80°00.0'N 11°31.2'E 126 CTD 13:48 80°00.1'N 11°31.8'E 102 PS59/146 14:59 80°06.6'N 10°56.5'E 347 CTD 15:15 80°06.7'N 10°57.2'E 346 PS59/147 16:32 80°14.0'N 10°19.9'E 531 CTD 16:56 80°14.2'N 10°20.9'E 535 PS59/148 18:04 80°21.7'N 09°42.3'E 653 CTD 18:28 80°21.8'N 09°42.3'E 655 PS59/149 19:56 80°30.0'N 08°59.8'E 972 CTD 20:27 80°29.4'N 08°52.2'E 984 PS59/150 22:09 80°24.4'N 07°41.4'E 743 CTD 22:34 80°24.5'N 07°41.1'E 745 21.07.01 PS59/151 00:30 80°18.4'N 06°17.1'E 573 CTD 00:50 80°18.5'N 06°18.0'E 570 PS59/152 02:37 80°13.0'N 05°03.3'E 860 CTD 03:06 80°13.0'N 05°04.5'E 857 PS59/153 04:31 80°08.4'N 04°01.4'E 1427 CTD 05:17 80°08.3'N 04°01.0'E 1434 PS59/154 06:16 80°05.3'N 03°17.3'E 2275 CTD 07:29 80°05.5'N 03°14.0'E 2250 PS59/155 08:24 80°01.9'N 02°33.8'E 2647 CTD 09:48 80°01.6'N 02°31.0'E 2665 PS59/156 10:55 79°58.3'N 01°45.5'E 3100 CTD 12:32 79°58.1'N 01°44.6'E 3233 PS59/157 14:37 79°53.2'N 00°35.0'E 2484 CTD 15:57 79°53.2'N 00°36.4'E 2463 PS59/158 18:41 79°39.6'N 00°01.4'N 2828 CTD 20:10 79°39.8'N 00°00.7'W 2828 22.07.01 PS59/159 00:42 79°25.4'N 00°02.0'E 2916 CTD 02:12 79°25.3'N 00°02.8'E 2921 PS59/160 05:19 79°09.8'N 00°00.4'E 2729 CTD 06:43 79°09.9'N 00°02.2'E 2730 PS59/161 08:16 79°00.1'N 00°12.8'W 2559 CTD 09:42 78°59.6'N 00°10.1'W 2557 PS59/162 11:12 78°59.0'N 00°50.7'W 2648 CTD 12:31 78°58.7'N 00°49.9'W 2648 PS59/163 14:04 78°56.8'N 01°23.3'W 2644 CTD 15:24 78°56.8'N 01°23.3'W 2637 PS59/164 17:21 78°59.1'N 02°02.0'W 2651 CTD 18:52 79°00.0'N 01°55.8'W 2651 PS59/165 20:46 79°00.1'N 02°32.8'W 2556 CTD 22:07 79°00.4'N 02°28.6'W 2564 PS59/166 23:37 79°01.3'N 03°04.0'W 2373 CTD 23.07.01 00:51 79°01.2'N 03°09.2'W 2380 PS59/167 04:25 79°05.6'N 03°37.1'W 2156 CTD 05:33 79°05.7'N 03°37.1'W 2160 PS59/168 07:32 78°59.9'N 04°13.6'W 1862 CTD 08:32 78°59.6'N 04°12.1'W 1878 PS59/169 09:33 78°58.0'N 04°48.8'W 1436 CTD 10:20 78°57.8'N 04°48.4'W 1448 PS59/170 11:13 78°59.9'N 05°16.7'W 1129 CTD 11:48 78°59.9'N 05°17.3'W 1117 PS59/171 13:01 78°59.4'N 06°05.5'W 451 CTD 13:19 78°59.3'N 06°05.3'W 454 PS59/172 14:58 78°59.9'N 06°53.5'W 280 CTD 15:11 79°00.0'N 06°52.9'W 273 PS59/173 15:48 78°58.4'N 07°13.1'W 251 CTD 16:01 78°58.5'N 07°12.7'W 254 PS59/174 16:55 78°59.9'N 07°42.4'W 192 CTD 17:07 78°59.9'N 07°42.0'W 189 PS59/175 17:44 79°00.5'N 08°00.8'W 185 CTD 17:56 79°00.5'N 08°00.3'W 186 PS59/176 18:45 78°59.4'N 08°29.9'W 176 CTD 18:55 78°59.4'N 08°29.6'W 177 PS59/177 19:48 78°59.9'N 08°57.5'W 283 CTD 20:04 78°59.8'N 08°57.2'W 286 PS59/178 21:26 78°59.7'N 09°30.5'W 230 CTD 21:38 78°59.8'N 09°30.4'W 224 PS59/179 22:38 79°00.4'N 10°00.4'W 275 CTD 22:52 79°00.4'N 10°00.4'W 273 PS59/180 23:34 78°59.5'N 10°30.4'W 311 CTD 23:49 78°59.5'N 10°30.2'W 311 24.07.01 PS59/181 00:36 79°00.1'N 10°79.7'W 246 CTD 00:44 79°00.7'N 10°59.9'W 246 PS59/182 01:35 79°00.4'N 11°27.9'W 235 CTD 01:47 79°00.4'N 11°27.9'W 235 PS59/183 02:51 79°00.0'N 11°46.0'W 300 CTD 03:05 79°00.1'N 11°45.9'W 292 25.07.01 PS59/184 08:05 78°49.9'N 00°00.6'W 2643 CTD 09:30 78°49.8'N 00°02.8'W 2636 PS59/185 10:40 78°40.0'N 00°00.3'E 1820 CTD 11:36 78°39.5'N 00°00.9'E 1787 PS59/186 12:50 78°30.3'N 00°01.0'W 2782 CTD 14:10 78°30.2'N 00°00.7'W 2782 PS59/187 16:16 78°15.0'N 00°00.2'W 3039 CTD 17:43 78°15.0'N 00°00.4'E 3039 PS59/188 19:29 78°00.1'N 00°00.3'W 3119 CTD 21:03 78°00.0'N O0°0O.8'W 3110 26.07.01 PS59/189 00:33 77°30.0'N 00°O0.4'E 3183 CTD 02:01 77°30.0'N 00°00.7'E 3184 PS59/190 05:35 77°00.O'N 00°00.0' 3250 CTD 07:08 77°00.7'N 00°00.5'E 3247 PS59/191 09:54 76°39.8'N 00°00.1'E 3260 CTD 11:29 76°40.2'N 00°00.4'E 3258 PS59/192 13:53 76°19.9'N 00°00.1'W 3131 CTD 15:22 76°20.4'N 00°01.2'W 3151 PS59/193 17:53 76°00.0'N 00°00.0' 2697 CTD 19:09 76°00.2'N 00°00.8'E 2718 PS59/194 20:27 75°49.9'N 00°00.4'W 1970 CTD 21:26 75°49.9'N 00°00.3'W 1968 PS59/195 23:51 75°30.0'N 00°00.2'W 3766 CTD 27.07.01 01:37 75°30.6'N 00°02.2'E 3774 PS59/196 03:30 75°15.0'N 00°00.3'W 3773 CTD 05:21 75°15.4'N 00°00.6'W 3772 "Berichte zur Polarforschung" Eine Titel übersicht der Hefte 1 bis 376 (1981 -2000) erschien zuletzt im Heft 413 der nachfolgenden Reihe Berichte zur Polar- und Meeresforschung". Ein Verzeichnis aller Hefte beider Reihen sowie eine Zusammenstellung der Abstracts in englischer Sprache finden sich im Internet unter der Adresse: bttp://www.awi-bremerhaven.de/Resources/publications.html Ab dem Heft Nr. 377 erscheint die Reihe unter dem Namen: "Berichte zur Polar- und Meeresforschung" Heft Nr. 377/2000 - "Rekrutierungsmuster ausgewählter Wattfauna nach unterschiedlich strengen Wintern", von Matthias Strasser Heft Nr. 378/2001 - Der Transport von Wärme, Wasser und Salz in den Arktischen Ozean, von Boris Cisewski Heft Nr. 379/2001 - ,,Analyse hydrographischer Schnitte mit Satellitenaltimetrie', von Martin Losch Heft Nr. 380/2001 - ,,Die Expeditionen ANTARKTIS XVI/1 -2 des Forschungsschiffes Polarstern 1998/1999, herausgegeben von Eberhard Fahrbach und Saad El Naggar Heft Nr. 381/2001 - ,,UV-Schutz- und Reparaturmechanismen bei antarktischen Diatomeen und Phaeocystis antarctica", von Lieselotte Rieger Heft Nr. 382/2001 - "Age determination in polar Crustacea using the autofluorescent pigment lipofuscin", by Bodil Bluhm Heft Nr. 383/2001 - ,,Zeitliche und räumliche Verteilung, Habitatspräferenzen und Populationsdynamik benthischer Copepoda Harpacticoida in der Potter Cove (King George Island, Antarktis)", von Gritta Veit-Köbler Heft Nr. 384/2001 - ,'Beiträge aus geophysikalischen Messungen in Dronning Maud Land, Antarktis, zur Auffindung eines optimalen Bohrpunktes tür eine Eiskerntiefbohrung", von Daniel Steinhage Heft Nr. 385/2001 - Actinium-227 als Tracer tu•r Advektion und Mischung in derTiefsee", von Walter Geibert Heft Nr. 386/2001 - ,,Messung von optischen Eigenschaften troposphärischer Aerosole in der Arktis", von Rolf Schumacher Heft Nr. 387/2001 - ,,Bestimmung des Ozonabbaus in der arktischen und subarktischen Stratosphäre", von Astrid Schulz Heft Nr. 388/2001 - "Russian-German Cooperation SYSTEM LAPTEV SEA 2000 The Expedition LENA 2000", edited by Volker Rach CTD and Mikhail N. Grigoriev Heft Nr. 389/2001 - 'The Expeditions ARKTIS XVI/1 and ARKTIS XVI/2 of the Rearch Vessel 'Polarstern' in 2000", edited by Gunther Krause and Ursula Schauer Heft Nr. 390/2001 - "Late Quaternary climate variations recorded in North Atlantic deep-sea benthic ostracodes", by Claudia Didié Heft Nr. 391/2001 - 'The polar and subpolar North Atlantic during the last five glacial-interglacial cycles", by Jan P. Helmke Heft Nr. 392/2001 - ,,Geochemische Untersuchungen an hydrothermal beeinflußten Sedimenten der Bransfield Straße (Antarktis)", von Anke Dählmann Heft Nr. 393/2001 - "The German-Russian Project on Siberian River Run-off (SIRRO): Scientific Cruise Report of the Kara Sea Expedition 'SIRRO 2000' of RV 'Boris Petrov and first results", edited by Ruediger Stein and Oleg Stepanets Heft Nr. 394/2001 - ,'Untersuchungen der Photooxidantien Wasserstoffperoxid, Methylhydroperoxid und Formaldehyd in derTroposphäre der Antarktis", von Katja Riedel Heft Nr. 395/2001 - "Role of benthio onidarians in the energy transfer processes in the Southern Ocean marine ecosystem (Antarctica)", by Covadonga Orejas Saco del Valle Heft Nr. 396/2001 - "Biogeochemistry of Dissolved Carbohydrates in the Arctic, by Ralph Engbrodt Heft Nr. 397/2001 - 'Seasonality of marine algae and grazers of an Antarctic rocky intertidal, with emphasis on the role of the limpet 1aciIla concinna Strebel (Gastropoda: Patellidae)", by Dohong Kim Heft Nr. 398/2001 - ,'Polare Stratosphärenwolken und mesoskalige Dynamik am Polarwirbel rand", von Marion Müller Heft Nr. 399/2001 - "North Antlantic Deep Water and Antarctic Bottom Water:Their Interaction and Influence on Modes of the Global Ocean Circulation", by Holger Brix Heft Nr. 400/2001 - 'The Expeditions ANTARKTIS XVIII/1 -2 of the Research Vessel 'Polarstern' in 2000", edited by Victor Smetacek, Ulrich Bathmann, Saad El Naggar Heft Nr. 401/2001 - "Variabilität von CH 20 (Formaldehyd) - untersucht mit Hilfe der solaren Absorptionsspektroskopie und Modellen", von Torsten Albrecht Heft Nr. 402/2001 - "The Expedition ANTARKTIS XVII/3 (EASIZ III) of RV 'Polarstern' in 2000", edited by Wolf E. Arntz and Thomas Brey Heft Nr. 403/2001 - "Mikrchabitatansprüche benthischer Foraminiferen in Sedimenten des Südatlantiks", von Stefanie Schumacher Heft Nr. 404/2002 - ,,Die Expedition ANTARKTIS XVII/2 des Forschungsschiffes Polarstern'2000", herausgegeben von Jörn Thiede und Hans Oerter Heft Nr. 405/2002 - "Feeding Ecology of the Arctic Ice-Amphipod Gamrnarus wilkitzkii, Physiological, Morphological and Ecological Studies", by Carolin E. Arndt Heft Nr. 406/2002 - "Radiolarienfauna im Ochotskisohen Meer - eine aktuopaläontologiscbe Charakterisierung der Biozönose und Taphozönose", von Anja Nimmergut Heft Nr. 407/2002 - "The Expedition ANTARKTIS XVI lI/5b of the Research Vessel 'Polarstern' in 2001", edited by Ulrich Bathmann Heft Nr. 408/2002 - ,,Siedlungsmuster und Wechselbeziehungen von Seepocken (Cirripedia) auf Muschelbänken (Mythos edu/is L.) im Wattenmeer", von Christian Buschbaum Heft Nr. 409/2002 - ,,Zur Ökologie von Schmelzwassertümpeln auf arktischem Meereis - Charakteristika, saisonale Dynamik und Vergleich mit anderen aquatischen Lebensräumen polarer Regionen", von Marina Carstens Heft Nr. 410/2002 - ,'Impuls-und Wärmeaustausch zwischen der Atmosphäre und dem eisbedeckten Ozean", von Thomas Garbrecht Heft Nr. 411/2002 - ,,Messung und Charakterisierung laminarer Ozonstrukturen in der polaren Stratosphäre", von Petra Wahl Heft Nr. 412/2002 - "Open Ocean Aquaculture und Offshore Windparks. Eine Machbarkeitsstudie über die multifunktionale Nutzung von Offshore-Windparks und Offshore-Marikultur im Raum Nordsee", von Bela Hieronymus Buck Heft Nr. 413/2002-A rctic Coastal Dynamics. Report of an International Workshop. Potsdam (Germany) 26-30. November 2001", edited by Volker RachCTD, Jerry Brown and Steve Solomon Heft Nr. 414/2002 - ,,Entwicklung und Anwendung eines Laserablations-ICP-MS- Verfahrens zur Multielementanalyse von atmosphärischen Eintragen in Eisbohrkernen", von Heiko Reinhardt Heft Nr. 415/2002 - ,'Gefrier- und Tauprozesse im sibirischen Permafrost- Untersuchungsmethoden und ökologische Bedeutung", von Wiebke Müller-bupp Heft Nr. 416/2002 - ,,Natürliche Klimavariationen der Arktis in einem regionalen hochauflösenden Atmosphärenmodell", von Wolfgang Dorn Heft Nr. 417/2002- Ecological comparison of two sandy shores with different wave energy and morphodynamics in the North Sea", von by Iris Menn Heft Nr. 418/2002-, ,Numerische Modellierung turbulenter Umströmungen in Gebäuden", von SimOn Domingo LOpez Heft Nr. 419/2002 - ,,Scientific Cruise Report of the Kara-Sea Expedition 2001 of RV 'Academic Petrov': The GermanRussian Project on Siberian River Run-off (SIRRO) and the EU Project 'ESTABLISH", edited by Ruediger Stein and Oleg Stepanets Heft Nr. 420/2002- "Vulkanologie und Geochemie pliozäner bis rezenterVulkanite der Bransfield-Straße ''West-Anarktis", von Andreas Veil Heft Nr. 421/2002 - ,,POLARSTERN ARKTIS XVII/2 Cruise Report: AMORE 2001 (Arctic Mid-Ocean Ridge Expedition)", by J. Thiede et al. Heft Nr. 422/2002- The Expedition 'AWI'of RV 'L'Atalante' in 2001 ", edited by Michael Klages, Benoit Mesnil, Thomas Soltwedel and Alain Christophe with contributions of the participants Heft Nr. 423/2002 - ,,Ober die Tiefenwasserausbreiiung im Weddellmeer und in der Scotia-Sea: Numerische Untersuchungen derTransport- und Austauschprozesse in der Wedell-Scotia-Konfluenz- Zone", von Michael Schodlok Heft Nr. 424/2002- Short- and Long-Term Environmental Changes in the baptev Sea (Sibirian Arctic) During the Holocene", von Thomas Müller-Lupp Heft Nr. 425/2002 - ,,Characterisation of glacio-chemical and glacio- meteorological parameters of Amundsenisen, Dronning Maud Land, Antarctica", by Fidan Göktas Heft Nr. 426/2002 - "Russian-Germann Cooperation SYSTEM LAPTEV SEA 2000:The Expedition LENA 2001 edited by Eva-Maria Pfeiffer and Mikhail N. Grigoriev Heft Nr. 427/2002 - ,,From the Inner Shelf to the Deep Sea: Depositional Environments on the Antarctic Peninsula Margin - A Sedimentological and Seismostratigraphic Study (ODP Leg 178)", byTobias März Heft Nr. 428/2002 - ,,Concentration and Size Distribution of Microparticles in the NGRIP Ice Core (Central Greenland) during the Last Glazial Period", by Urs Ruth Heft Nr. 429/2002 - ,,Interpretation von FCKW-Daten im Weddeilmeer", von Olaf Klatt. Heft Nr. 430/2002 - ,,Thermal History of the Middle and Laie Miocene Southern Ocean - Diatom Evidence", by Bernd M. Censarek. Heft Nr. 431/2002 - ,,Radium-226 and Radium-228 in the Atlantic Sector of the Southern Ocean", by Claudia Hanf land. Heft Nr. 432/2002 - ,,Population dynamics and ecology of the surf clam Donax serra (Bivalvia, Donacidae) inhabiting beaches of the Benguela upwelling system", by Jürgen Laudien. Heft Nr. 433/2002 - ,,Die Expedition ARKTIS XVll/1 des Forschungsschiffes POLARSTERN 2001 herausgegben von Eberhard Fahrbach. CCHDO Data Processing Notes Date Person Data Type Action Summary 2011-08-19 Barna, Andrew CTD/Cruise Report Website Update Exchange CTD data file, pdf doc online The CTD and PDF Documentation both came from the 25 Years of Polarstern Hydrography CD. The CTD data has been reformatted into changed by Andrew Shen, the resulting file was checked in both ODV4 and JOA5. The documentation is unchanged. 2014-04-05 Kappa, Jerry CrsRpt Website Update Final TXT version online A new, CCHDO-formatted TXT version of the cruise report is now online. It includes all the PI-supplied documents, plus the CCHDO summary pages and these Data Processing Notes. 2