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ABSTRACT 
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aboard RRS Charles Darwin (CD171).  The primary objectives of this work were to measure the 

meridional fluxes of heat, nutrients and CO2.  This coast-to-coast, zonal data set represents the first 

full repeat of this section since 1981. 
 

A total of 144 CTD/LADCP stations were sampled across the North Atlantic subtropical gyre. In 

addition to temperature, salinity and oxygen profiles from the CTDO2 package, water samples 

from a 24-bottle rosette were analysed for salinity, dissolved oxygen and inorganic nutrients at 

each station.  In addition water samples were collected and analysed onboard ship for SF6, CFCs, 

pCO2, TIC and alkalinity and samples were collected for shore-based analyses for He/Tr, organic 

nutrients and organic carbon.  Full depth velocity measurements were made at every station by up 

to two ADCP’s mounted on the rosette frame.  Throughout the cruise velocity data in the upper 

few hundred meters of the water column were provided by an ADCP mounted in the ship's hull, 

and continuous measurements of near-surface water temperature, salinity and pCO2 were made.  

Meteorological variables were monitored and samples of air and rainfall were periodically 

collected.  In addition stand alone pumps were deployed 13 times and samples were collected for 

shore-side analyses of nitrogen isotopes, pigments and carbon and nitrogen.  During the cruise two 

fibre optic gyrocompasses were trialled both on the bench and mounted on the rosette.  
 

This report describes the methods used to acquire and process the data on board the ship during 

cruise CD171. 

 
KEYWORDS:  ADCP,    Atlantic Ocean,    atmospheric chemistry,    biogeochemical budgets,    carbon 
budgets,    Carbon Tetrachloride,    Carbon,    CFC,    Charles Darwin,    Circulation,    climatic changes,    
cruise CD171 2005,    CTD,    Deep Western Boundary Current,    fibre optic gyrocompass,    FOG,    Gulf 
Stream,    helium-tritium samples,    hydrographic section,     Lowered ADCP,    Meridional Overturning 
Circulation,    nutrients,    organic nutrients,    oxygen,    SAPS, shipboard ADCP,   Stand Alone Pumping 
System,    Sulphur Hexaflouride,    Vessel Mounted ADCP 

 
ISSUING ORGANISATION National Oceanography Centre, Southampton 
    University of Southampton, Waterfront Campus 
    European Way 
    Southampton  SO14 3ZH UK 
    Tel:  +44(0)23 80596116    Email:  nol@noc.soton.ac.uk 

 
A pdf of this report is available for download at: http://eprints.soton.ac.uk/44333/ 



 



5 

Contents 

Contents ....................................................................................................................5 

Scientific Personnel ..................................................................................................7 

Ship’s Personnel .......................................................................................................8 

Background and Objectives ......................................................................................9 

Itinerary and Cruise Track for CD171....................................................................11 

Narrative .................................................................................................................15 

1. CTD System Operation........................................................................................19 

2. CTD Data Processing and Calibration................................................................22 

3. Water Sample Salinity Analysis ..........................................................................41 

4. Dissolved Oxygen ................................................................................................46 

5. Inorganic Nutrients.............................................................................................52 

6. Carbon Parameters .............................................................................................60 

7. Chlorofluorocarbons ( CFC’s) and sulfur hexafluoride (SF6)............................67 

8. Helium and Tritium ............................................................................................74 

9. Organic Nutrients ...............................................................................................78 

10. Atmospheric Sampling ......................................................................................82 

11. Instrumentation.................................................................................................87 

12. Underway Salinity Samples...............................................................................92 

13. Bathymetry ........................................................................................................95 

14. Computing.........................................................................................................96 

15. Lowered Acoustic Doppler Current Profiler (LADCP) .....................................98 

16. Navigation and Vessel Mounted ADCP ............................................................99 

17. Fibre Optic Gyros (FOG’s) .............................................................................115 

 



6 



7 

Scientific Personnel 

 

Name Role Affiliation 

   

Elaine McDonagh Principal Scientist / LADCP JRD-NOC 

Ute Schuster Carbon System – Leader UEA, Norwich 

Pete Brown Carbon System UEA, Norwich 

Gareth Lee Carbon System / CFC UEA, Norwich 

Marie-Jose Messias CFC – Leader UEA, Norwich 

Noam Bergman CFC UEA, Norwich 

Sinhue Torres – Valdes Nutrients – Leader GDD-NOC 

Tim Lesworth Nutrients / Atmospheric Sampling UEA, Norwich 

Rhiannon Mather Nutrients / Organic Nutrients / SAPS Liverpool 

Brian King Watchkeeper / CTD / FOG’S / ADCP JRD-NOC 

Susan Leadbetter Watch Leader / FOG’S Liverpool 

Hannah Longworth Watch Leader / CTD SOES-NOC 

Paula McLeod Watch Leader / VMADCP JRD-NOC 

Claire Powell Watchkeeper / CTD JRD-NOC 

Jeff Benson Technical Liaison / Instrumentation UKORS-NOC 

Bob Keogh Instrumentation / Mechanical Engineer UKORS-NOC 

Dave Teare Instrumentation UKORS-NOC 

Jeff Bicknell Computing UKORS-NOC 

 

LADCP- Lowered Acoustic Doppler Current Profiler; 

VMADCP – Vessel Mounted ADCP 

CTD- Conductivity, temperature depth; SAPS- Stand Alone Pumps; 

FOG’S- Fibre Optic Gyros 

NOC – National Oceanography Centre, Southampton; JRD – James Rennell Division; 

GDD – George Deacon Division; SOES – School of Ocean and Earth Sciences; 

UKORS – UK Ocean Research Services; UEA – University of East Anglia; 

Liverpool – University of Liverpool; 



8 

Ship’s Personnel 

 

Phil Gauld Master 

Peter Newton Chief Officer 

Malcolm Graves 2nd Officer 

Kieron Hailes 3rd Officer 

Kishor (Jet) Jethwa Chief Engineer 

Alex Greenthorn 2nd Engineer 

Gary Slater 3rd Engineer 

Jim Bills 3rd Engineer 

Dean Hurren ETO 

Glenn (Tiny) Pook CPO (Deck) 

Martin Harrison CPO (Scientists) 

Phil Allison PO (Deck) 

Gary Crabb S1A 

Mark Moore S1A 

Andrew Pearce S1A 

Stuart Cook S1A 

Carl Moore POMTR 

Clive Perry SCM 

Peter Lynch Chef 

Wally Link Assistant Chef 

Graham Mingay Steward 

 



9 

Background and Objectives 

The main aim of the 36°N project was to complete a full-depth transatlantic 

hydrographic section at that latitude. In addition a section was made across the Gulf 

Stream and deep western boundary current to the north of the main section at the 

beginning of the trip and, at the end of the cruise a section was made across the Gulf 

of Cadiz. 

 

Even though the North Atlantic is relatively well observed, there are major problems 

in our knowledge of its present state and how it might evolve. At present, it is unclear 

as to the extent of subtropical warming, how phytoplankton growth is sustained over 

the subtropics, and the rate at which the ocean uptakes carbon dioxide. 

 

In terms of the historical context, the pair of transatlantic hydrographic sections at 

24°N and 36°N were taken in 1981 by Roemmich and Wunsch (1985), including 

CTD stations, nutrient measurements, but lacking carbon, CFC measurements and 

acoustic current profiling. The 24°N transatlantic section was repeated in 1992 during 

WOCE, and in 2004 (Cunningham, 2005) both occupation included carbon and CFC 

sampling, but only the 2004 section included acoustic current profiling. There is a 

crucial gap in the WOCE coverage (highlighted in the review by Wunsch, 2002) in 

there being no 36oN section during WOCE leaving 36°N unsampled since 1981. 

 

A recent analysis of historical data suggests that the warming over the N. Atlantic is 

concentrated over the tropics and subtropics (Lozier and Moore, 2003). Over the 

subtropical gyre, there appears to be a loss of inorganic nutrients (Rintoul and 

Wunsch, 1991) and it is unknown how the nitrogen, phosphorus and carbon budgets 

are closed. In addition, recent observations (Lefèvre et al., 2004; Rosón et al., 2003) 

suggest that there is less uptake of CO2 than expected over the N. Atlantic (with an 

implied outgassing of anthropogenic CO2) compared with predictions from models. 

 

Thus the data collected on this cruise will contribute to knowledge of how physical 

and biological cycling operates within the subtropical North Atlantic. Specifically the 

program will determine the heat transport across 36°N and identify the extent of 
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warming over the subtropical North Atlantic. The project will also determine the 

nitrogen and phosphorus budgets in the subtropical North Atlantic and identify the 

relative importance of the transport and cycling of dissolved organic nitrogen and 

phosphorus. In addition we will determine the carbon transport across 36°N and 

identify whether the subtropical North Atlantic is taking up or outgassing 

anthropogenic carbon. 

 

In total 144 CTD (conductivity-temperature-depth) stations were occupied (Figure 1 

and Table 1). A 24-bottle rosette was used to take water samples at these CTD 

stations. An ADCP (acoustic doppler current profiler) was mounted on the rosette 

frame. At the site of 13 of these CTD stations SAPs (stand-alone-pumps) were 

deployed. Hull-mounted ADCP, thermosalinograph (TSG), meteorological and pCO2 

measurements were made underway. Continual atmospheric sampling was carried out 

for aerosols and gas phase ammonia and rain samples were taken at every 

opportunity. 
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Itinerary 

Depart St. Georges, Bermuda, 1st May 2005 – arrive Lisbon, Portugal, 15th June 2005 

 

Figure 1: Cruise Track and CTD Stations for CD171 
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Table 1: List of station positions for CD171 

Sampling 

St
a 

nu
m

 

Date 
ddd hhmm 

Latitude 
deg min 

Longitude 
deg min 

Water 
depth 
(m) H

eT
r 

C
FC

 

O
2 

C
O

2 

D
O

M
 

Sa
lt 

N
ut

s 

SA
Ps

 

1 122 1814 34 42.51 N 66 42.89 W 5251  X X X X X X  
2 123 0737 35 35.62 N 67 59.99 W 5099  X X X  X X  
3 123 1716 36 13.85 N 69 08.44 W 4563   X X X X X  
4 124 0116 36 19.42 N 69 44.44 W 4529  X X   X X  
5 124 0729 36 29.80 N 70 00.38 W 4466   X   X X  
6 124 1435 36 38.41 N 70 15.75 W 4422 X X X X X X X X 
7 125 0252 36 44.31 N 70 33.53 W 4385  X X   X X  
8 125 0828 36 51.99 N 70 52.14 W 4260   X X X X X  
9 125 1348 37 01.92 N 71 09.24 W 4125   X  X X X  

10 125 1909 37 11.03 N 71 25.96 W 4005 X  X X X X X  
11 126 0021 37 19.36 N 71 40.75 W 3610  X    X   
12 126 0632 37 26.57 N 71 57.08 W 3249   X X X X X  
13 126 1220 37 36.66 N 72 12.10 W 3363 X  X X X X X  
14 128 1040 36 00.89 N 74 48.77 W 124   X  X X X  
15 128 1150 35 59.66 N 74 47.76 W 208   X X X X X  
16 128 1258 35 58.63 N 74 46.43 W 515   X   X X  
17 128 1437 35 57.13 N 74 44.24 W 1052   X X X X X  
18 128 1715 35 54.71 N 74 40.53 W 1511   X   X X  
19 128 2057 35 46.40 N 74 27.51 W 1937   X X  X X  
20 129 0103 35 38.96 N 74 16.75 W 2516   X  X X X  
21 129 0603 35 30.67 N 73 59.16 W 3035   X X X X X X 
22 129 1129 35 21.18 N 73 44.50 W 3437   X   X X  
23 129 1938 35 35.82 N 74 07.02 W 2831   X   X X  
24 130 0059 35 21.71 N 73 46.16 W 3418   X  X X X  
25 130 0652 35 09.52 N 73 28.21 W 3837   X X X X X  
26 130 1239 35 17.71 N 72 56.09 W 4165   X   X X  
27 130 1857 35 25.10 N 72 24.43 W 4263 X X X X X X X  
28 131 0141 35 33.94 N 71 51.52 W 4251  X X   X X  
29 131 0836 35 41.96 N 71 19.75 W 4349  X X  X X X  
30 131 1500 35 49.98 N 70 47.97 W 4431 X X X X X X X  
31 131 2158 35 58.05 N 70 14.82 W 4478  X X   X X  
32 132 0451 36 06.79 N 69 41.63 W 4540   X  X X X  
33 132 1104 36 15.37 N 69 07.74 W 4562   X X X X X  
34 132 1718 36 13.58 N 68 30.91 W 4637   X   X X  
35 133 0005 36 14.04 N 67 54.16 W 4749   X   X X  
36 133 0751 36 15.13 N 67 19.19 W 5016 X X X X X X X X 
37 133 1936 36 15.35 N 66 40.45 W 5052   X   X X  
38 134 0251 36 14.82 N 66 05.14 W 4883   X   X X  
39 134 0952 36 14.09 N 65 27.37 W 4936  X X X X X X  
40 134 1704 36 13.09 N 64 49.14 W 5019   X   X X  
41 135 0217 36 15.86 N 64 13.78 W 5019   X   X X  
42 135 0933 36 14.74 N 63 37.52 W 5044  X X X X X X  
43 135 1640 36 15.09 N 63 00.66 W 5039   X   X X  
44 136 0014 36 15.70 N 62 24.39 W 4967   X   X X  
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45 136 0805 36 15.52 N 61 46.35 W 4958 X X X X X X X X 
46 136 1957 36 14.54 N 61 09.85 W 4787   X   X X  
47 137 0310 36 14.81 N 60 31.77 W 4887   X  X X X  
48 137 1000 36 14.52 N 59 54.53 W 5059  X X X  X X  
49 137 1649 36 07.95 N 59 19.00 W 4906   X   X X  
50 137 2127 36 06.64 N 59 00.17 W 5198  X X X  X X  
51 138 0133 36 05.85 N 58 42.75 W 4556   X   X X  
52 138 0844 36 00.63 N 58 04.97 W 5204  X X X X X X  
53 138 1637 36 10.09 N 57 15.23 W 4842   X   X X  
54 139 0042 36 14.10 N 56 26.25 W 5377  X X X X X X  
55 139 0924 36 14.65 N 55 36.50 W 5399   X   X X  
56 139 2120 36 14.98 N 54 43.59 W 5107 X X X X X X X X 
57 140 0533 36 15.23 N 53 56.49 W 5447   X   X X  
58 140 1340 36 14.93 N 53 06.78 W 5468  X X X  X X  
59 140 2247 36 29.29 N 52 16.64 W 5459   X   X X  
60 141 0747 36 38.83 N 51 26.35 W 5453  X X X X X X  
61 141 1623 36 25.12 N 50 37.23 W 5384  X X   X X  
62 142 0102 36 15.01 N 49 47.74 W 4957  X X X  X X  
63 142 0947 36 14.62 N 48 58.01 W 5339  X X   X X  
64 142 2212 36 14.98 N 48 07.74 W 5417  X X X X X X X 
65 143 0727 36 15.87 N 47 18.61 W 5215  X X   X X  
66 143 1612 36 14.88 N 46 28.20 W 5076  X X X X X X  
67 144 0100 36 15.05 N 45 39.31 W 5168   X   X X  
68 144 0912 36 15.21 N 44 49.48 W 4849  X X X X X X  
69 144 1732 36 15.17 N 43 58.87 W 4829   X   X X  
70 145 0206 36 14.80 N 43 08.95 W 4835  X X X  X X  
71 145 0849 36 14.82 N 42 32.60 W 4125   X   X X  
72 145 1847 36 17.01 N 41 55.94 W 4132 X X X X X X X X 
73 146 0145 36 15.13 N 41 18.61 W 4417   X   X X  
74 146 0830 36 14.98 N 40 41.80 W 4417  X X X  X X  
75 146 1657 36 15.13 N 40 05.95 W 3876   X  X X X  
76 146 2350 36 15.17 N 39 28.90 W 3562  X X X  X X  
77 147 0616 36 14.94 N 38 51.81 W 3753   X   X X  
78 147 1229 36 14.60 N 38 16.15 W 3536  X X X X X X  
79 147 1927 36 15.11 N 37 38.79 W 3597   X   X X  
80 148 0126 36 15.04 N 37 02.05 W 2998  X X X  X X  
81 148 0657 36 14.95 N 36 25.92 W 2995   X   X X  
82 148 1556 36 14.97 N 35 48.92 W 2770 X X X X X X X X 
83 148 2116 36 14.76 N 35 12.26 W 2159   X   X X  
84 149 0239 36 14.88 N 34 36.27 W 2273  X X X  X X  
85 149 0805 36 15.01 N 33 58.94 W 2842   X   X X  
86 149 1323 36 15.10 N 33 22.09 W 2120   X   X X  
87 149 1831 36 14.84 N 32 45.70 W 2228  X X X X X X  
88 150 0001 36 14.79 N 32 08.88 W 2728   X   X X  
89 150 0540 36 14.84 N 31 31.91 W 2826   X   X X  
90 150 1103 36 14.76 N 30 56.08 W 3038  X X X X X X  
91 150 1645 36 14.99 N 30 19.03 W 3001   X   X X  
92 150 2237 36 15.00 N 29 42.02 W 3288  X X X  X X  
93 151 0448 36 14.79 N 29 05.73 W 3469   X   X X  
94 151 1040 36 14.90 N 28 29.11 W 3283   X   X X  
95 151 2011 36 14.44 N 27 50.11 W 3419 X X X X X X X X 
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96 152 0208 36 15.09 N 27 14.84 W 3294   X   X X  
97 152 0757 36 15.13 N 26 39.06 W 3609   X   X X  
98 152 1406 36 15.01 N 26 02.03 W 4038  X X X X X X  
99 152 1851 36 31.65 N 25 57.51 W 2677  X X   X X  
100 153 2110 36 15.20 N 26 02.45 W 4036  X X X  X X  
101 154 0343 36 14.87 N 25 25.17 W 3876  X X   X X  
102 154 0930 36 15.01 N 24 49.00 W 3141  X X X X X X  
103 154 1520 36 15.06 N 24 12.01 W 3685   X   X X  
104 154 2130 36 14.95 N 23 34.97 W 4390  X X X  X X  
105 155 0404 36 14.95 N 22 58.85 W 4563  X X   X X  
106 155 1357 36 15.00 N 22 21.30 W 5001  X X X X X X X 
107 155 2034 36 15.12 N 21 45.14 W 4712   X   X X  
108 156 0328 36 14.94 N 21 09.09 W 4797  X X X  X X  
109 156 1022 36 14.97 N 20 31.67 W 5077   X  X X X  
110 156 1727 36 15.06 N 19 54.82 W 5436  X X   X X  
111 157 0517 36 15.26 N 19 17.64 W 5488 X X X X X X X X 
112 157 1319 36 14.99 N 18 41.64 W 5529  X X   X X  
113 157 2130 36 15.13 N 18 04.97 W 4760  X X X  X X  
114 158 0619 36 15.30 N 17 28.00 W 5127  X X  X X X  
115 158 1406 36 15.52 N 16 51.60 W 4587   X X X X X  
116 158 2124 36 14.85 N 16 15.09 W 4263  X X X  X X  
117 159 0445 36 15.18 N 15 37.91 W 3958   X   X X  
118 159 0854 36 09.03 N 15 22.25 W 1848  X X X  X X  
119 159 1702 35 59.59 N 14 57.50 W 2224 X X X X X X X X 
120 159 2119 35 54.03 N 14 42.06 W 3541   X   X X  
121 160 0440 35 47.57 N 13 59.43 W 4747  X X X X X X  
122 160 1127 35 48.15 N 13 17.45 W 4863  X X   X X  
123 160 1903 35 47.74 N 12 35.65 W 4868  X X X  X X  
124 161 0229 35 48.01 N 11 53.93 W 4863   X X  X X  
125 161 1256 35 48.55 N 11 11.62 W 4863 X X X X X X X X 
126 161 1954 35 47.74 N 10 29.70 W 4810  X X X  X X  
127 162 0313 35 53.93 N 09 48.23 W 4472  X X X X X X  
128 162 0938 36 06.37 N 09 12.79 W 3993  X X   X X  
129 162 1340 36 08.99 N 09 04.00 W 3521   X   X X  
130 162 1719 36 11.97 N 08 56.27 W 3019  X X X  X X  
131 162 2144 36 25.61 N 08 45.63 W 2544   X   X X  
132 163 0104 36 26.85 N 08 45.02 W 2048   X   X X  
133 163 0338 36 28.38 N 08 44.25 W 1539  X X X  X X  
134 163 0625 36 35.72 N 08 40.64 W 998  X X X  X X  
135 163 0826 36 38.37 N 08 39.68 W 772  X X X X X X  
136 163 1109 36 47.02 N 08 34.94 W 489  X X X  X X  
137 163 1304 36 51.87 N 08 33.07 W 209  X X X  X X  
138 163 2002 35 57.59 N 08 31.66 W 2612  X X X  X X  
139 164 0119 35 30.48 N 08 18.37 W 2197  X X X  X X  
140 164 0625 35 02.96 N 08 03.84 W 2289  X X X  X X  
141 164 1437 34 34.97 N 07 49.22 W 2295 X X X X X X X X 
142 164 1753 34 22.94 N 07 43.94 W 1485  X X X  X X  
143 164 2024 34 18.06 N 07 40.85 W 995         
144 164 2159 34 12.03 N 07 36.98 W 549  X X X  X X  
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Narrative 

We arrived in Bermuda on Tuesday 26th April and spent the next four days mobilising the 

cruise in St. George (twinned with Lyme Regis, Dorset). Shore leave ended at 8am local time 

on Sunday 1st May and we sailed at 9am local time. Bermuda local time is GMT -3hours, all 

time are in GMT unless otherwise stated. Most of the rest of the day was spent bunkering. 

We left the bunkering wharf and headed towards the section at 36°N, dropping the pilot at 

about 2000.  The scientists retired to their cabins to adjust and prepare. 

 

Monday 2nd May started with preparations for the work ahead and an emergency muster and 

boat drill at 1330. A full-depth test station was occupied at 1620. We remained hove to while 

sampling this station - the sea was rough and the rain cold.  Tuesday May 3rd brought much 

calmer seas and sunshine. A second test station, where all of the bottles were fired at one 

depth (1000m), was occupied at 0700. The first station on the section (station 3) commenced 

at 1545 

 

Wednesday 4th May – Station 6 was occupied – the surface currents were the strongest yet 

encountered, up to 3 kts. After the CTD cast the first SAPs station was completed. We were 

200 km east of the Gulf Stream’s mean position and were initially unsure whether we had 

passed through the current proper or a cold-core ring. Satellite data sent from home 

confirmed that we had passed through the eastern edge of a meander on the Gulf Stream. 

 

Thursday 5th and Friday 6th May the weather began to deteriorate – CTD’s 11, 12 and 13 

were sampled on station because it was too rough to be working on deck whilst the ship was 

moving. When we arrived at the waypoint for the next station the weather had deteriorated 

(atmospheric pressure was still dropping), we moved towards the next waypoint to reassess 

the situation. We arrived at this waypoint at 1700 and remained hove to whilst the bad 

weather continued with winds gusting to 50 kts. 

 

Saturday May 7th – at 1500 – we reviewed the weather forecasts. The storm that had been 

affecting us was moving northeastward up the eastern seaboard of the United States. The 

forecast predicted that at our current position the weather would remain sufficiently bad for 

work to remain stopped on the 8th and be marginal on the 9th. The decision was taken to 
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abandon the first crossing of the Gulf Stream section and move to the beginning of the 

second crossing of the Gulf Stream and the beginning of the transatlantic section. At 15.30 

we began sailing southwestward, away from the storm and towards a more promising 

forecast 

 

Sunday May 8th - We arrived at the western end of our planned transatlantic section at 1030. 

The weather was good and we proceeded with CTD station 14. At approximately 2230 the 

bridge observed a tide line on the water’s surface – we were between CTD stations 19 and 

20. 

 

Monday May 9th – We passed through the high velocities associated with the Gulf Stream at 

~0400. Station 21 was occupied in the centre of these high velocities. Station 22 at the 

eastern flank of the Gulf Stream was aborted at 1128 while there was 3425m of wire out 

because of an electrical problem. The electrical retermination of the wire and load testing 

were completed by 1715. While the wire was being reterminated we steamed to a position 

between station 20 and 21 – the next station (23) was occupied here to improve our resolution 

of the Gulf Stream. Station 24, which commenced at 2345 was a repeat of the aborted station 

22. 

 

After station 25 was completed at 0530 on May 10th we commenced with 30nm (nautical 

mile) station spacing. The stations had been closer than that in the boundary current. 

 

Thursday 12th May – station 33 was completed at 1300 hours. This station was a repeat of 

station 3 – the first station occupied on the section. The completion of this station marked the 

end of the Gulf Stream box. Subsequent to this we headed due east. 

 

Saturday 14th May – Electrical problems in the control room meant that the ship’s engine lost 

power at around 2100. Power was restored and the ship was moving again by 2345. 

 

Sunday 15th May – Ship’s clock advanced by one hour at 0200 (ship’s time). 

 

Tuesday 17th May – At 2200 we completed station 50. This station was added between two 

stations at 30nm spacing. The cast went to 910 dbar where all bottles were fired. A CFC 
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minimum occupied this depth and the samples were used by the transient tracer group to 

estimate the background concentration in the niskins or bottle blanks. 

 

Wednesday 18th May 2005 –. This morning it was confirmed that we would divert to Punta 

Delgada on the Azores to collect the lube oil that we had not been able to get in Bermuda. It 

was estimated that the diversion would take 24 hours. After station 52 was completed at 1100 

the decision was taken to increase the station spacing from 30nm to 40nm to accommodate 

this unscheduled delay. This took immediate effect and station 53 was occupied 40nm along 

the track from station 52. 

 

Sunday 22nd May – Ship’s clock advanced by one hour at 0200 (ship’s time). 

 

Wednesday 25th May - A station spacing of 40 nm had been maintained for 7 days and 18 

stations. We reverted to the 30nm spacing after station 70 had been completed at 0400. 

 

Sunday 29th May 2005 – Ship’s clock advanced by one hour at 0200 (ship’s time). 

 

Wednesday 1st June - Station 98 was completed at 1600. We broke off work here as this was 

the closest approach of the section to Punta Delgada in the Azores. We completed station 98 

slightly earlier than anticipated so had time for an additional CFC bottle blank station (station 

99) where all of the bottles were fired at 2600 m. This was completed at 1900 on the steam 

between the section and Punta Delgada. We also completed two 360-degree turns in opposite 

directions. These manoeuvres were designed to help with the calibration of the fibre optic 

gyrocompasses that were being trialled on board. 

 

Thursday 2nd June - We met the pilot for Punta Delgada at 0700 and moved alongside to take 

on water, lube oil and other supplies. We also collected another workhorse ADCP that had 

been shipped to us from NOCS. We left the dock and the pilot at 1100 and headed back to the 

section. We enjoyed a barbeque on the after deck that evening and were back on the section 

at 2000. Our first station back on the section (station 100) was a repeat of station 98. 

 

Sunday 5th June  – Ship’s clock advanced by one hour at 0200 (ship’s time). 
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Monday 6th June – station 112 was completed at 1540. This was the deepest station on the 

section with a maximum CTD pressure of 5628 dbar. The good weather that we enjoyed for 

the majority of the cruise meant that we easily completed all of the deep stations on the 

section without having to resort to a more heavy-duty wire. 

 

The good weather to which we had become accustomed broke at the beginning of the week. 

The wind rose and the swell grew. The increased sea state slowed our progress between 

stations but did not affect our capacity to complete those stations. 

 

12th June we completed the transatlantic section with Station 137 at 1330. We steamed south 

to occupy some stations across the Gulf of Cadiz. These stations would allow us to better 

characterise the Mediterranean influence on the North Atlantic. 

 

13th June No bottles were fired on Station 143 in order that the station could be completed in 

as timely a way as possible. Station 144, the last of this cruise, was completed at 2230 off the 

coast of Morocco. We steamed towards Lisbon as the final data was analysed, samples were 

run and stored and demobilisation commenced. We arrived in Lisbon on the morning of 

Wednesday 15th June and spent the day demobilising and backing up data. The final samples 

were packed in dry ice and freighted home on Thursday 16th. On Friday 17th June the 

majority of the science party flew back to the UK after a successful trip. 

 

Elaine McDonagh 
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1. CTD System Operation 

A total of 144 CTD casts were completed on the cruise utilising this 24-way frame 

arrangement, with the following configuration: 

 

Sea-Bird 9/11+ CTD 

Sea-Bird 24 position Carousel 

Sea-Bird 35 Deep Ocean Standards Thermometer 

Chelsea fluorometer 

Chelsea transmissometer 

RD Instruments Workhorse LADCP (downward looking) 

RD Instruments Workhorse LADCP (upward looking) 

SOC LADCP battery pressure case 

WETLabs scattering meter 

Tritech altimeter 

SOC 10KHz beacon 

Sonardyne High Frequency Marker beacon 

SOC/Sea-Bird Breakout Box 

24 by 20L Ocean Test Equipment water samplers 

 

The configuration for the CTD was as follows: 

 

Sea-Bird 9+ underwater unit, s/n 09P-34173-0758 

Sea-Bird 3 Premium temperature sensor, s/n 03P-4105 (frequency=0) 

Sea-Bird 4 conductivity sensor, s/n 04C-2571 (frequency=1) 

Digiquartz temperature compensated pressure sensor, s/n 90074 (frequency=2) 

Sea-Bird 3 Premium temperature sensor, s/n 03P-4151 (frequency=3) 

Sea-Bird 4 conductivity sensor, s/n 04C-2580 (frequency=4) 

Sea-Bird 5T submersible pump, s/n 05T-3962 (primary) 

Sea-Bird 5T submersible pump, s/n 05T-3607 (secondary) 

Sea-Bird 24 position Carousel, s/n 32-37898-0518 

Sea-Bird 35 DOST, s/n 35-34173-0048 

Sea-Bird 11+ V2 deck unit, s/n 11P-24680-0587 
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The configuration for the A/D channels was as follows: 

 

V1 = Sea-Bird 43 dissolved oxygen sensor, s/n 43-0363 

V2 = Tritech PA-200 altimeter, s/n 6196.118171 

V3 = Chelsea Aquatracka MKIII fluorometer, s/n 88/2050/095 

V6 = WETLabs scattering meter, s/n BBRTD-169 

V7 = Chelsea Alphatracka MKII transmissometer, s/n 04-4223-001 

 

The configuration for the remaining instruments was as below: 

 

RD Instruments Workhorse Monitor 300 KHz, s/n 5414 (downward-looking) 

RD Instruments Workhorse Monitor 300 KHz, s/n 5415 (upward-looking) 

SOC stainless steel battery pressure case, re-chargeable cells, s/n 02 

SOC/Sea-Bird Breakout Box, s/n BO119201 

SOC 10KHz Beacon, s/n B0 

Sonardyne HF Marker beacon, 12000 metre, s/n 233 

 

Sensor Changes: 

 

1) Cast 001---The RDI Workhorse (upward-looking) LADCP flooded, and was 

removed from the frame 

2) Cast 003---Altimeter not working, replaced with Benthos PSA-916T, s/n 1040 

3) Cast 005---Shift in secondary conductivity sensor, replaced with s/n 04C-3054 

4) Cast 037---Scattering meter not working properly, replaced with s/n BBRTD-182 

5) Cast 039---Failed connector on BreakOut Box, scattering meter output changed 

from V6 to V4 

6) Cast 055---BreakOut Box leaked under pressure, replaced with s/n BO19109T 

7) Cast 055---Change in ‘BOB’ connector configuration resulted in fluorometer 

output change from V3 to V6 

8) Cast 059---Change altimeter output from V2 to V3 

9) Cast 067---Noise/spiking in secondary conductivity sensor, change to s/n 04C-3502 

10) Cast 077---Continual noise/spiking in secondary conductivity sensor, change back 

to s/n 04C-3054 
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11) Cast 113---Jump in secondary conductivity sensor, replaced with s/n 04C-3052 

12) Cast 119---Replaced BreakOut Box with s/n BO19110 for testing purposes; 

altimeter output changed from V3 to V2 

 

The noise present on many casts in secondary sensors was finally traced to an 

intermittent fault in the pump ‘Y’ cable, on the connector to the pump. The cable was 

replaced for cast number 077. 

 

The 20L OTE water samplers were problematic throughout the cruise, in regards to 

not properly closing and sealing in the sample. Various configurations for preparing 

the samplers were attempted, as well as tightening the external springs. A total of 273 

closing failures were logged, an average of 1.9 per cast. On past cruises, the average 

for closing failures was 2.5 per cast. At the earliest possible convenience, the sampler 

lanyard system will be re-configured following testing for the best design, and the 

spring tension will also be tested and springs replaced where necessary. 

 

Jeff Benson 

Bob Keogh 

Dave Teare 
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2. CTD Data Processing and Calibration 

Raw CTD files from the logging PC were transferred to a networked PC on which 

SEASOFT modules below were run manually and the output files transferred to the 

unix system. 

 

2.1. Seabird Processing 

Data Conversion (DatCnv) 

Input files: CD171{nnn}.dat, CD171{nnn}.CON, CD171{nnn}.BL. 

Output files: CD171{nnn}.cnv, CD171{nnn}.ros 

The raw CTD data file (CD171{nnn}.dat) is calibrated and output to 

CD171{nnn}.cnv using calibration coefficients set in configuration file 

CD171{nnn}.CON. Output parameters (Table 2.1) are set in the DatCnv specification 

file, DatCnv.psu. A rosette summary file is also created (CD171{nnn}.ros) from the 

raw CD171{nnn}.BL file with one record for each bottle fire. 

 

Number Parameter Unit 

1 Pressure, Digiquartz db 

2 Temperature ITS-90, deg C 

3 Conductivity mS/cm 

4 Temperature, 2 ITS-90, deg C 

5 Conductivity, 2 mS/cm 

6 Pressure Temperature deg C 

7 Time, Elapsed Seconds 

8 Oxygen, SBE 43 µmol/Kg 

9 Fluorescence, Chelsea Aqua 3 Chl Con µg/l 

10 Beam Transmission, Chelsea/Seatech/Wetlab 

Cstar 

% 

11 Altimeter M 

12 Flag  

Table 2.1: Output from SeaBird data conversion module DatCnv. 
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Align CTD 

Input and Output File: CD171{nnn}.cnv 

Alignment of data streams to reduce spiking or hysteresis. We advance oxygen by 6 

sec relative to pressure to account for sensor delay. Coefficients for temperature and 

pressure are set to zero. 

 

Wild Edit 

Input and Output File: CD171{nnn}.cnv 

The mean and standard deviation of each parameter are separately calculated for 

blocks of 500 cycles. Points that lie outside two times the standard deviation are 

temporarily excluded for recalculation of the standard deviation. Points outside ten 

times of the new standard deviation are replaced by a bad flag.  This is applied to 

temperature, conductivity pressure temperature, oxygen, transmission and altimeter 

height. 

 

Cell Thermal Mass 

Input and Output File: CD171{nnn}.cnv 

Removes conductivity cell thermal mass effects with a recursive filter permitting 

salinity accuracy greater than 0.01 in regions of steep gradients. In such regions the 

correction may be of the order 0.005 but is otherwise negligible. The thermal anomaly 

amplitude (α) is 0.03 and the thermal anomaly time constant (1/β) is 7.0. 

 

Filter 

Input and Output File: CD171{nnn}.cnv 

Low pass filter pressure with τ = 0.15s 

 

Translate (Trans) 

Input and Output File: CD171{nnn}.cnv 

Creates an ASCII version of the binary .cnv file. 
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2.2. Pstar Processing 

2.2.1 CTD data files 

The following routines process CTD data from resolution of 24hz to 2db and annotate 

the header accordingly. 

ctd0  Input file: CD171{nnn}.cnv Output file: ctd171{nnn}.24hz 

Writes 24hz ascii data from CD171{nnn}.cnv into pstar format; ctd171{nnn}.24hz.  

Header information extracted from the .cnv file and position manually input from 

deck logs. 

ctd1  Input file: ctd171{nnn}.24hz Output files: ctd171{nnn}.1hz, ctd171{nnn}.10s 

In the deck unit, fin sensor data is input through the secondary channel and frame 

sensor data through the primary. When possible (see section 2.3) fin sensors are used 

as the primary and temp/temp2 and cond/cond2 names are swapped accordingly. Data 

is averaged into 1s and from this 10s intervals (ctd171{nnn}.1hz and 

ctd171{nnn}.10s respectively). Additional variables are derived; t2-t1, c2-c1, salin, 

salin2, potemp, potemp2, sigma0 and sigma2. 

ctd2  Input file: ctd171{nnn}.1hz Output files: ctd171{nnn}.ctu, ctd171{nnn}.2db 

The 1hz data cycles from the downcast start to upcast end are saved in 

ctd171{nnn}.ctu. The 2db file is obtained from the downcast cycles sorted on 

pressure and missing levels filled with linear interpolation.  Individual cycles from the 

start of the downcast, at the maximum pressure and at the end of the upcast are 

written into ctd2.exec. 

fir0  Input file: ctd171{nnn}.ros Output file: fir171{nnn} 

Writes seabird ascii ctd171{nnn}.ros file into pstar. CTD variables at the bottle stops 

are extracted from the 10s file by merging on time to give fir171{nnn}. Winch data is 

read into pstar and saved in win171{nnn}. 

sam0  Input file: sam.masterCD171 Output file: sam171{nnn} 

The sam file format is defined in sam.masterCD171. CTD data are pasted into a copy 

of the master file from fir171{nnn} and sample data subsequently added (section 2.2). 

add_positions.exec:  Input files: abnv1711, ctd2.exec   Output file: {nnn}.position 

GPS latitude and longitude from file abnv1711 are merged with the CTD times at the 

start of the downcast, maximum pressure and end of upcast (in ctd2.exec) and written 

into {nnn}.position.  The corrected position (relative to deck log) is written into 

headers of the 24hz, 1hz,  10s, ctu, 2db and sam files. 
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add_ladcpdepth.exec: Input files: ctd171{nnn}.2db, ctd2.exec, proc.dat (ladcp) 

Maximum instrument depth determined from maximum CTD pressure in 2db file and 

water depth from Visbeck processing of LADCP data. Both are written into headers 

of the same files as add_positions.exec. 

add_simdepth.exec: Input files: ctd171{nnn}.2db, ctd2.exec, 171sim 

Water depth is extracted from the simrad record if the cast was not deep enough for 

the LADCP to resolve water depth, otherwise same procedure as add_ladcpdepth.exec 

 

2.2.2 Sample Files 

Analysed sample data for each measured variable (var) - oxygen (oxy), nutrients 

(nut), salinity (sal), and deep ocean standards thermometer (sbe) - as available are 

saved on a mac in excel text files and transferred to the unix system by ftp. Problems 

with bottle closure during CD171 resulted in the use of bottle flag and sample flags 

flowing the convention of 2 = good, 3 = suspect, 4 = bad and 9 = absent. Variable 

flags are initially assigned by the analyst in the text file with good as default and 

ultimately carried in the sam171{nnn} file. Subsequent comparison of bottle salinity 

and oxygen to CTD measured values in the sam171{nnn} file identifies suspect 

bottles that are flagged as 3. These, although appearing fine when the CTD landed on 

deck, have oxygen and salinities consistent with the bottle having leaked or closed at 

an unexpected depth. Sample number, station number and bottle flag are all set in the 

salinity sample files. After ftp transfer, {var}.exec reads the text file, 

{var}171{nnn}.txt, into a pstar file - {var}171{nnn}.  pas{var} then pastes data 

cycles into the sam file - sam171{num}. Cableout is extracted from the win171{num} 

files at times of bottle firing and pasted into the sam file using wire.exec. 

 

2.2.3 Data Treatment 

Significant wake effects were observed in the frame temperature and conductivity 

sensor pair due to the 20 litre Niskin bottles, hence the fin sensors are preferentially 

used as the primary pair. Numerous casts before station 80 had unsatisfactory noise in 

temperature and conductivity from the fin sensor, after which improved data quality 

was attributed to a pump change on the fin. Spikes in regions of small gradients were 

edited out, or if this was judged to result in loss of property resolution either the fin 
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temperature and conductivity were substituted with those from the frame pair 

(incorporating sensor offset) over the affected data cycles or the frame sensor pair 

were used as the primary over the full cast. Table 2.2 summarises all editing 

performed and records the primary/secondary sensor choice in the final data set. All 

edits were applied to the 1hz files, salinity and other dependent variables were re-

computed (as in ctd1), and the 10s, ctu, 2db, fir and sam files updated accordingly. 

 

Sensor Serial Number 
Stat 

1ºT 1ºC 2ºT 2ºC 

Fi
n
? 

K 
Notes 

See explanatory notes following table 

001 

002 

003 

004 

4105 

 

2571 

 

4151 

 

2580 

 
N 1.00006 

Jumps in 2580 conductivity on stations 
001, 003 and 004, use frame set as 
primary for 001 to 004 for consistency 
in calibration. 

005 
Spikes - T: D2081±5, D2425±1.5 C: 
D2111±37 D2673±9 D2344±3 
D2438±24         U2439±19 

006 
Removed duplicate depths resulting 
from winch stop. Spikes – C: 
D1781±17, D2016±25, U2127±5 

007 - 

008 - 

009 - 

010 - 

011 Spikes – T: D2044±5, C: D2076±38 

012 - 

013 

4151 3054 4105 2571 Y 1.00006 

- 

014 

015 
4105 2571 4151 3054 N 1.00006 

Salinity spikes over full depth from fin 
sensors so use frame as primary. 



27 

016 Swap D52-90 

017 Spikes – T&C: D315.5±3.5 D296±2 

018 

4151 3054 4105 2571 Y 1.00006 

- 

019 

020 

Fin conductivity unstable with spikes, 
use frame 

021 

022 

4105 2571 4151 3054 N 1.00006 
Salinity spikes at surface and D1500-
2500 (021), D1700-2300 (022), use 
frame sensors. 

023 
Spikes: T: D1774±2; C: D307.5±1.5 
D1799±25 

024 
Spikes – C: D1390±16, D1511±24 

Swap U136-376, D136-376. 

025 Spike – C: D407±1.5 

026 Swap D64-327, U219-180 

027 - 

028 Swap D122-406, U365-30 

029 Swap D73-415 

030 - 

031 Swap D53-443, U251-206 

032 

Spikes – T: D1573.5±1.5, C: 
D1592±20 

Swap D9-438 

033 
Spikes – T: D1308±2 C: D1170±11 
D1325±20 D1591±5     Swap D28-460 

034 
Spikes – C: U219±10 U192±4 

Swap D12-289, U185-70 

035 

4151 3054 4105 2571 Y 1.00006 

Swap D162-463, U183-0 
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036 Spike – T: U90±1 

037 Spike – C: U209±2 

038 Swap D128-391 

039 Spike – C: D240±2. Swap D94-367 

040 Swap D301-421 

041 

      

Spikes – C: D326±2, D1218±3 
D1226±3, D1390±2. 

Swap D1041-1102, D1208-1285, 
D1381-1428, D1457- 1499 

042 4105 2571 4151 3054 N 1.00001 - 

043 Swap D348-457, D556-731, U260-96 

044 - 

045 - 

046 - 

047 - 

048 - 

049 - 

050 

1.00006 

Swap D9-517db 

051 - 

052 Swap D0-470db 

053 - 

054 Swap D11-469 

055 Swap D82-512 

056 Swap D10-546 

057 

4151 3054 4105 2571 Y 

1.00004 

Swap D36-395 
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058 Swap D103-519 

059 Swap D4-507 

060 - 

061 

      

Swap D11-173, D326-427 

062 4105 2571 4151 3054 N 1.00000 Swap D4-507 

063 Swap D39-456 

064 Swap D10-499 

065 

4151 3054 4105 2571 Y 1.00006 

Swap D11-426 

066 4105 2571 4151 3054 N 1.00000 - 

067 Swap D11-421 

068 Spike – C: D368±2 

069 

4151 3052 4105 2571 Y 1.00003 

Swap D11-473 

070 

071 

072 

073 

074 

075 

4105 2571 4151 3052 N 0.99999 
Salinity spikes with frame sensors 
significant – use frame sensors 

076 4151 3052 4105 2571 Y 1.00005 
Numerous T, C spikes removed U 
3500 – 2300, U1154±3, U1145±7. 
Swap 1-36. See N076 below. 

077 

078 

079 

4105 2571 4151 3054 N 0.99999 
Salinity spikes with frame sensors 
significant – use frame sensors 

080 4151 3054 4105 2571 Y 1.00005 - 
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to 
097 

098 
to 
103 

4151 3054 4105 2571 Y 1.00007 - 

104 
to 
111 

4151 3054 4105 2571 Y 1.00005 - 

112 4105 2571 4151 3054 N 0.99999 Fin conductivity unstable, use frame 

113 

to 
144 

4151 3052 4105 2571 Y 1.00006 - 

Table 2.2 CTD temperature and conductivity sensor information with editing 

performed. 

NOTES 

T = temperature, C = conductivity. 1º or 2º refers to final primary and secondary 

sensor choices as justified in italics. Editing detailed in regular type. 

Station 076 Frame T signal intermittent over cast. Fin C has bad spikes on downcast, 

final cast constructed from upcast of fin sensors, still deemed of bad quality. 

Spike Removal “Spike – T/C D/U pressure±deltaP” indicates that T or C spikes were 

replaced with absent data values from pressure minus deltaP to pressure plus deltaP 

(in dbar) on the down (D) or up (U) cast. This is done only if linear interpolation over 

the absent data range is deemed acceptable, otherwise the “swap” method is 

followed. Spikes spanning a pressure range less than 2db are not recorded. 

Sensor Swap “Swap D/U pressure1-pressure2”. 1ºC is replaced by 2ºC minus offsetC, 

and 1ºT replaced by 2ºT minus offsetT with offsets decided after consideration of the 

mean over station groups, entrainment effects in the frame noted.  On the downcast 

offsetC = 0.01 mS/cm, offsetT = 0.001 ºC, while on the upcast , offsetC = 0 mS/cm, 

offsetT = 0 ºC except for station 41 (both offsets = 0 for up and down cast) and 076 

(offsetC = -0.05 mS/cm, offsetT = -0.02 ºC). 
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2.3. CTD Calibration and Evaluation 

2.3.1 SBE35 Deep Ocean Standards Thermometer 

 

The deep ocean standards thermometer fitted to the CTD fin, with a nominal initial 

accuracy of 0.001ºC and stability of 0.001ºC/year, provides a reference for evaluating 

performance of the primary and secondary CTD temperature sensors. 

 

SBE35 Data acquisition and calibration 

Sensor 0048 was used throughout CD171. At the end of each CTD station, a file is 

uploaded from the SBE35’s EEPROM, saved in an  ascii file (SBE35_{nnn}.cap) and 

transferred to the unix system, file format in Table 2.3.1. 

 

Column Description 

1 Sample number 

2 Date (DD MMM YYYY – day, month year). The month is a 3-character 
alphabetic abbreviation; e.g., Jan, feb, mar, etc). 

3 Time (HH:MM:SS – hour, minute, second) 

4 Bn=bottle position number 

5 Diff=(maximum – minimum) raw thermistor reading during a 
measurement (provides a measure of the amount of variation during the 
measurement) 

6 Val=average raw thermistor reading, corrected for zero and full scale 
reference readings 

7 T90=average corrected raw thermistor reading, converted to engineering 
units (°C[ITS-90]) 

Table 2.3.1 Format of SBE35_{nnn}.cap files 

Full details of the thermometer may be found in Cunningham (2005). At each bottle 

fire 8 cycles of SBE35 data (at intervals of 1.1s) are averaged and temperature 

computed from sensor raw output (calibration coefficients a0, a1, a2, a3, a4 of Table 

2.3.2). 
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! 

T90 =
1

a0 + a1ln(n) + a2ln
2
(n) + a3ln

3
(n) + a4 ln

4
(n)

" 

# 
$ 

% 

& 
' ( 273.15  

 

Coefficient Date Value 

a0 4.21014933x10-3 

a1 -1.12827756x10-3 

a2 1.74012910x10-4 

a3 -9.73030909x10-6 

a4 

07/11/03 

2.09032576x10-7 

slope 1.000017 

offset 
17/03/05 

-0.001128 

Table 2.3.2 SBE35 0048 calibration coefficients 

To account for sensor drift, a slope and offset correction is applied: 

T90 = slope x T90 + offset [degC, ITS-90] 

 
The ascii file is treated as other sample files; sbe.exec reads Diff, Val and T90 into a 

pstar file (sbe35171{nnn}) with variable names maxdiff, av and t_35 then passbe 

pastes the SBE35 T90 records into the sam171{nnn} file, one record per bottle fire. 

 
Comparison of SBE35 and CTD temperatures 

Bottle blank stations (50 and 99) are excluded from the following evaluation of CTD 

temperature sensor performance (Figure 2.3.3, Table 2.3.4) since the interval between 

bottle fires was less than 10s – the required wait after bottle firing to ensure the 8.8s 

of averaged SBE35 data correspond to the CTD 10s average as recorded in the sam 

file. Additionally CTD data that has not been corrected for spikes is excluded 

(stations 70-78 fin sensor). Note CTD temperature sensor 4015 is the frame sensor 

and 4151 the fin sensor throughout the cruise regardless of primary/secondary 

distinctions made in Table 2.2. 
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Figure 2.3.3 SBE35 - CTD temperature (ΔT) as a function of pressure for frame CTD 

sensor (black +) and fin sensor (red x) for (i) the full water column after rejection 

limit 1 and (ii) deeper than 2000m and rejection limit 2. Limit 1: reject |ΔT| > ± 

0.05ºC, compute mean and standard deviation of ΔT and reject ΔT outside µ±2σ, 

repeat latter. Limit 2: Select only ΔT from below 2000 dbar, then reject |ΔT| > 

±0.005ºC, and ΔT outside the resulting µ±2σ, repeated twice (Table 2.3.4). 

 
Below 2000 dbar where spatial and temporal variability of water properties are 

anticipated to have only a small effect on the temperature difference between the 

SBE35 and CTD sensor, ΔT (µ±σ) is less than 0.001 with fin and frame sensor both 

reading warm relative to the SBE35. This is within the nominal accuracy of the CTD 

sensor and therefore no attempt at calibration of either CTD sensor is made. 

Variability of ΔT for the frame sensor is almost two times higher than that for the fin 

over the whole water column, this is attributed to effects of entrainment by the CTD 

frame, noting that the SBE35 is positioned on the fin. 

 



34 

 Limit 1: ± 0.05ºC, ± 2σ, ± 2σ Limit 2: P>2000 dbar, ± 0.005ºC, ± 2σ, 
± 2σ 

CTD 
sensor 

Ntot % 
reject 

µ(ºC 
x10-3) 

σ (ºC 
x10-3) 

Ntot % 
reject 

µ (ºC    
x10-4) 

σ(ºC 
x10-4) 

Frame 192848 0.3 0.73 3.69 59620 0.1 -3.82 4.35 

Fin 179831 0.2 0.30 1.96 57489 0.1 -1.61 3.61 

Table 2.3.4: SBE35–CTD temperature residuals (ΔT) after application of limit 1 or 2 

NOTES. Notice different units in columns 4 and 5 compared to 8 and 9.  Rejection 

limits explained in legend of Figure 2.3.3. Ntot is the number of residuals before 

selection in limit 1, and the number at pressures greater than 2000 dbar in limit 2. % 

reject is the percent of Ntot rejected after limits applied. µ and σ are the mean and 

standard deviations of the remaining ΔT. 

 

A possible pressure effect is noted in the sensor 4151 (fin) with a warm bias of 

approximately 0.0007ºC at 5500 dbar decreasing with pressure and not detectable 

above 3000 dbar. Since we do not know whether the signal is also present on the 

downcast (upcast-downcast comparisons are too noisy) and it is within the nominal 

sensor accuracy we do not correct for it. 

 
2.3.2 Conductivity Calibration 

CTD conductivities are calibrated by comparing them to bottle conductivities derived 

from salinity samples obtained during the CTD upcast. The CTD upcast is calibrated 

and applied to the downcast: the downcast and upcast must be free from hysteresis for 

this to be valid - discussed below. 

 

Method 

Calibrated CTD conductivity (Ccorr) is obtained by applying a slope correction (K) to 

account for sensor drift; 

Ccorr = K*CCTD      where      K = <Cbot/CCTD> 

Cbot is bottle conductivity obtained from measured bottle salinity and CCTD upcast 

CTD conductivity for the 10s at the time of the bottle fire - K is the mean ratio of 
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bottle to CTD conductivity over a group of stations. To compute K, only bottle 

salinities flagged as good and from bottles flagged as good are used. Cdiff = Cbot - 

CCTD and Cratio = Cbot/CCTD are computed and samples not satisfying |Cdiff| < 0.1 and 

0.9998 < Cratio < 1.0002 are rejected along with those outlying µ±2σ, repeated twice 

for the remaining Cdiff and Cratio. The station K value is the mean Cratio of the 

remaining samples. This procedure is to remove the influence of outlying bottle 

salinities resulting from poor sample collection, analysis or the effect of spatial and 

temporal variability in water properties at the time of bottle firing.  Problems with the 

autosal (refer to Section 3) meant that apparent variability in K computed between 

stations was checked against the deep ocean potential temperature – salinity (θ-S) 

relationship. For the vast majority of stations groups (selected on geographical 

location) the CTD showed a tighter curve than the bottle samples. Under the 

assumption that the deep ocean properties are stable, it was decided not to vary the 

calibration on a station-by-station basis as suggested by the bottle salts, instead a 

mean K was taken over as many stations as considered feasible. 

 

The Frame Sensor (2571) 

Assigning a K value for stations in which the frame sensor pair was used as the 

primary (Table 3.2.1) on the above basis introduced inconsistencies in the deep θ-S 

relationship when calibrated fin and frame stations were compared. A pressure shape 

in conductivity residuals showed high CTD conductivities at the surface - Cdiff of 

approx. -0.005, decreasing to zero offset by 1500 dbar and Cdiff < ±0.001 below this.  

Using the full depth to compute K, introduced a bias to low values. Comparison of fin 

and frame downcast conductivity (for stations when the fin sensor was good) showed 

any possible pressure effect on the downcast of sensor 2571 was more probably due 

to entrainment – the magnitude of which was estimated from the fin-frame sensor 

temperature difference shape with pressure and background stratification. The 

pressure effect in the upcast of 2571 is therefore not corrected for, since there is no 

evidence that it is present in the downcast. The K value applied was computed from 

bottle samples below 1000 dbar only to prevent the shallow samples from giving an 

artificially low K – this procedure removed the inconsistencies noted previously in the 

deep θ-S relationship. 
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Figure 2.3.5a: Bottle – CTD salinity versus (i) station number, (ii) bottle salinity and 

(iii) pressure. Selection limits are |Sbot – SCTD| < 0.1, µ±2σ, µ±2σ.  

 

Calibration Application and Evaluation 

ctdcondcal.exec applies the K value calibration to the primary conductivities in the 

1hz file, dependent variables are recomputed (salin, potemp, sigma0 and sigma2) and 

the 10s, ctu, 2db, fir and sam files updated. 
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Figure 2.3.5b: Bottle – CTD salinity versus (i) station number, (ii) bottle salinity and 

(iii) pressure. Selection limits are pressure > 1500db, |Sbot – SCTD| < 0.05, µ±2σ, 

µ±2σ. 

 

In assessment of calibrated salinities against bottle salinities (Figures 2.3.5a and 

2.3.5b, Table 2.3.6) the above points must be considered. The bottle minus upcast 

CTD salinity residuals appear low on some stations when the frame sensor pair were 

used (Figures 2.3.5a (i) 2.3.5b (i)), but part of this is argued to be due to hysteresis 

and would not be observed on the downcast. This also explains the cluster of residuals 

at –0.005 in Figures 2.3.5a (ii) and (iii). Performance of the autosal was disappointing 

during the cruise and for many stations a large mean salinity residual in the calibrated 

data set is attributed to calibration problems of the autosal rather than indication of a 
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need for different calibration. Comprehensive evaluation of sensor performance over 

the deep pat of the θ-S curve led us to conclude that the sensors were essentially 

stable over the cruise and we are confident of the calibration applied to ±0.001 in 

salinity even though the standard deviation of the bottle-CTD salt residuals are larger 

than this (Table 2.3.6). 

 

Limits µ σ N_tot N % 

±0.1, ±2σ, ±2σ -0.0004 0.0026 2840 2478 12.7 

P > 1500db, ±0.05, ±2σ, ±2σ -0.0001 0.0016 1013 950 6.2 

Table 2.3.6: Bottle-CTD salinity residual mean (µ) and standard deviation (σ). N_tot 

is the total number of good flagged bottle salinities and N those used to compute the 

mean. % is the percent rejected after application of limits. 

 

References 

Cunningham, S. A. et al. 2005 RRS "Discovery" Cruise 279 April-May 2004, pp 199, 

Cruise Report no. 54, Southampton Oceanography Centre, Southampton. 
 

Hannah Longworth 

 

2.3.3 Oxygen Calibration 

The CTD Oxygen calibration was reworked at NOC after the cruise. CTD oxygen 

data were compared with bottle sample oxygen values in units of µmol/kg. 

 

The requirement is to produce a set of CTD downcast oxygen profiles which are in 

agreement with the bottle samples collected on the upcast. 

 

Pstar program pbotle was used to identify the data cycle from the downcast 2db file 

that corresponded with the upcast bottle closure. Matching was done on potential 

temperature. If potential temperature was multivalued on the downcast so that there 

were several matching cycles, the cycle was chosen to be the one nearest in pressure. 
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The results of pbotle were inspected station-by-station to ensure that the automated 

process produced ‘sensible’ results. 

 

The CTD data from the deck unit (the ‘raw’ data = Octd_raw) had been converted from 

engineering units to dissolved oxygen units using parameters supplied by the 

manufacturer. 

 

An initial bulk calibration was estimated from stations 51 to 58. The form of the 

calibration was a scaling of the oxygen concentration, plus a fit to residuals of an 

offset and a dependence on pressure and potential temperature. Thus 

Octd_bulk = 1.2 * Octd_raw – 0.0042 * P – 0.50 * θ – 15.8   µmol/kg. 

 

The bulk calibration was applied to all stations, and residuals between bottle samples 

and matched CTD cycles were calculated. 

 

The residuals were examined on a station by station basis. For each bottle, 

R1 = Osamp – Octd_bulk. 

 

It was found that some stations had systematic residuals with non-zero mean. Two 

forms of fit and adjustment were considered. Either a mean offset for each station, or 

a mean scaling factor for each station. Thus for each station number n, 

coefficients An or Bn are determined by least squares fit to the relationship: 

R1 = An + Bn * Octd_bulk. 

 

The residuals could be fitted equally well by an offset term, An, or a scaling term, Bn. 

Significance of fit was not improved by including both of the An and Bn terms. The 

scaling term was chosen in preference to the offset, because it seemed a more natural 

representation of the performance (sensitivity) of the sensor. 

 

For each station, a scaling factor Bn was determined by least squares fit to the 

residuals Osamp – Octd_bulk. The further set of residuals (R2 = R1 – Bn * Octd_bulk) was 

examined to decide whether each bottle should be included in the determination of Bn 

for that station. Large values of R2 indicated either a bad bottle sample (leaky Niskin 

bottle or bad titration), or a region of strong vertical property gradient in which the 
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bottle sample was good but did not match the CTD value because of bottle flushing 

distance or because of mismatch between the upcast sample and the downcast CTD. 

Iterative visual inspection and exclusion of large values of R2 was performed for each 

station until a satisfactory determination of Bn was made. Bottles excluded from the 

fitting procedure were noted. 

 

A value of Bn was determined for each station for which sufficient bottle data were 

available. Of these values for Bn, 51 were the most statistically significant (F statistic 

for reduction of variance greater than 7). These significant values of Bn were then 

divided into five groups of stations by visual inspection (1:16; 17:62; 63:98; 99:116; 

117:144). In each group, a linear fit (Bsmooth)to the individual station values of Bn was 

made to produce a complete time series of piecewise-linear, slowly-varying station 

adjustments. On the main 36°N section (stations up to 137) the amplitude of this 

slowly-varying scaling factor varied between -0.007 and +0.014. 

 

The above procedure was applied so that the CTD data for station n become 

Octd_adj(n) = Octd_bulk(n) * Bsmooth(n). 

 

The mean station offsets of the sample data compared with the adjusted CTD data 

have rms of order 2 µmol/kg. This is comparable to the confidence in the bottle 

samples, so the smoothed adjustment Bsmooth(n) is chosen in preference to a station-

by-station adjustment of CTD data to bottle data. 

 

The new set of residuals 

R3 = Osamp – Octd_adj 

was inspected and found to have a small residual shape in deep water. Accordingly a 

final empirical adjustment Ooffset was determined and applied to all stations. 

for Pressure < 3000 dbar:  Ooffset = 0 

for Pressure > 3000 dbar:  Ooffset = (P-3000) * 1.4 * 10-3  µmol/kg 

and the final CTD data for station n are calculated as 

Octd_cal(n) = Octd_adj(n) + Ooffset 

 

Brian King 
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3. Water Sample Salinity Analysis 

Sampling 

Water samples for the analysis of salinity were drawn from each Niskin at every 

station into 200ml glass sample bottles. Each bottle was rinsed twice and then filled to 

just below the neck. The rim of each bottle was wiped to prevent salt crystals forming 

and then each bottle was sealed with a clean, dry, disposable plastic stopper and a 

screw lid. Duplicate samples were drawn from the lower bottles whenever there were 

enough sample bottles to do so. Crates of salinity samples were then allowed to 

equilibrate to room temperature in the constant temperature (CT) lab for 24 hours 

before analysis. 

 

Laboratory Set-up 

Two salinometers were set up in the CT lab. After the engineers made an adjustment 

to the cooling system it was possible to maintain the temperature of the lab between 

19-20°C by keeping the door open. The slight drawback was that the air handling 

system did not drain properly whilst on station owing to the ship’s listing to the 

starboard side and as a result up to half and inch of water would collect in the corner 

at each station. The temperature of both salinometers was set to 21°C. 

 

Both the JRD and UKORS salinometers were the Guideline 8400A model. At first 

only the UKORS salinometer was used, up to the analysis of samples from station 33 

when we found that the case vent fan had failed resulting in irregular cycling of the 

heater. Consequently the results from station 33 have been regarded with great 

caution. The JRD autosal was used was used as a replacement for the UKORS 

machine. 

 

Initially the brand new peristaltic pump provided by UKORS would not run smoothly 

due to the gear mechanism either being over tightened or misaligned. After adjusting 

the mechanism and mounting the pump performed well. However readings were very 

difficult to make due to a large amount of bubbles being introduced to the samples. 

This lessened over time and we feel that it may have been due to pockets of air 
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remaining in the new pump / long inactivity of the unit as a whole. As a result the 

readings it gave were still less stable so we reverted to using the UKORS machine as 

soon as a replacement fan was found, just after the analysis of station 54. 

 

The peristaltic pump on the UKORS autosal also incurred problems. At around station 

75 the tubing between the pump and the inlet started leaking, introducing bubbles to 

the sample and making consistent readings difficult. The new pump (see above) was 

swapped in while the tubing was replaced. Later (station 106) the peristaltic tubing in 

the pump itself developed a leak, so the whole pump was replaced. 

 

Further problems were incurred during the analysis of station 96 when the cell arms 

would not fill correctly. It was found that drops of water had formed in the capillaries 

above. These were syringed out with air. It is possible that the air pump is not 

producing enough backpressure during cell filling. The pump valve was lubricated 

with a little oil, but little change was observed. We believe the problem was caused by 

incomplete flushing of the cell: a small amount of sample enters the capillaries each 

time the cell is filled, but this should be flushed out with each cell flush. The problem 

has been avoided by making sure the cell is thoroughly flushed after each sample. 

 

Analysis 

Analyses were performed by Brian King, Claire Powell, Elaine McDonagh, Hannah 

Longworth, Paula McLeod, Dave Teare, Bob Keogh and Susan Leadbetter (in short 

everyone related to the physics team pitched in). Samples were standardized using 

Ocean Scientific International IAPSO standard seawater, batch P145 (Date:15 July 

2004, K15:0.99981) 
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Figure 3.1: The measurement of the g-ratio for each bottle of standard seawater used. 

Triangles indicate that the UKORS instrument was used (filled triangles for samples 

after the standard reset dial was adjusted) and circles for the JRD instrument. A total 

of 2910 samples were used for 144 stations and 9 crates of TSG samples. 

 

Figure 3.2: The correction ratio used for the analysis of each station. The symbols 

used indicate which instrument was used as detailed in figure 3.1. 

 

Standard seawater readings were taken at the beginning and end of the analysis of 

each crate. These readings have drifted upwards over the course of the cruise (figure 
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3.1) to the point where the standard reset dial on the UKORS autosal was changed 

from 354 to 296 on 27th May, before the analysis of station 72. As a result the g-ratio 

correction applied to each crate (figure 3.2) should be considered as 3 time series: 

JRD autosal and the UKORS autosal before and after this change. 

 

It was also noted that the g-ratio readings of the standard seawater would often vary 

during the analysis of a crate of samples (figure 3.3). At first it was assumed that a 

simple average of the two values would suffice but after the analysis of station 50 it 

was decided that analysis of a ‘secondary standard’ was necessary after every eight 

bottles. Standard seawater could not have been used for this purpose, as there would 

not have been enough so entire crates of 24 samples were drawn from the bottom 

Niskin at sporadic intervals. These secondary standards were then equilibrated for 24 

hours before use. Use of the secondary standards showed that discrepancies between 

standard seawater measurements were often trivial and a simple average could be 

taken. In other cases, where the difference was greater the secondary standards 

showed that especially after a period of inactivity, the autosal had a spin up time so 

the first standard reading should be disregarded and the values for the first two niskins 

regarded with caution. 

Figure 3.3: The drift during analysis (ssw start – ssw end) for the analysis of each 

station. The key to symbols is the same as for figure 3.1. 
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Processing 

Following standard practice the salinity values were obtained from conductivity ratio 

measurements using an excel spreadsheet, which corrects for offsets from standard 

readings. These results were transferred to unix in the form of a windows text file 

containing the variables statnum sampnum botlnum botsala botsalb botsal as well as 

botlflag salflag, which pertain to whether or not the bottle fired correctly and whether 

or not the sample was analysed for salinity in a satisfactory manner. 

 

Assessment 

The 8400A machines are capable, with great care, of producing reproducible data 

good enough for the calibration of CTD data although much of the data needs to 

picked over for faults. However we feel that the overall drift and stability is not as 

good as we have come to expect from 8400B. 

 

In conclusion, whilst the 8400A is adequate, due to its stability over time, it should be 

used more as a back-up to an 8400B than as a stand-alone instrument. Particularly on 

a cruise like this one where the demands placed on it are heavy. 

 

Claire Powell 
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4. Dissolved Oxygen 

4.1 Sampling 

Seawater for dissolved oxygen determinations was collected from Niskin bottles 

directly into pre-calibrated glass bottles using a silicon rubber tube. Before the sample 

was drawn, the water was allowed to flush out of the glass bottle for several seconds. 

The temperature of the sample was then recorded and the fixing reagents (i.e. 

manganese chloride and sodium hydroxide/sodium iodide solutions) immediately 

added and mixed. Bottles were kept in the dark and were mixed for a second time 

after the precipitate settled to more than 50% of the bottle volume (30 to 40 min). All 

titrations were carried out within 2 to 3 hours of sample collection. Sampling for 

oxygen was done before any other sample was taken or, after samples for He and / or 

CFC's were collected. All CTD casts from station 3 were sampled. 

 

4.2 Analysis 

Dissolved oxygen in seawater samples was measured using a Winkler Ω-Metrohm 

titration unit (716 DMS Titrino) with an amperometric system to determine the end 

point of the titration (Culberson & Huang, 1987). Chemical reagents were prepared 

according to Dickson (1994) and recommendations given by this author and by 

Holley & Hydes (1994) were adopted. Thiosulphate calibrations were carried out 

every 4-6 days (see Table 4.1) and consisted of the analysis of 5 blanks1 and 5 

standards. Blanks were prepared by pipetting 1 mL of either a 1.696 mM prepared 

KIO3 standard (for stations 3 to 11) or a 1.667 mM certified OSIL iodate standard 

(from station 12 onwards) into 70 ml of Milli-Q water. The analytical standard was 

prepared by pipetting 10 ml of the above, prepared or certified standards, into 70 ml 

of Milli-Q water. Averaged blank and standard titration volumes from every 

calibration were adopted for computing oxygen concentrations. Oxygen 

concentrations were facilitated by the use of an excel-spreadsheet provided by 

Richard Sanders. 3 sets of 24+1 oxygen sampling bottles were used and a spreadsheet 

was generated for each set with the respective oxygen bottle labels and pre-calibrated 

                                                
1 Except from the first calibration, which consisted of only 3 blanks. 
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volumes. Whenever a bottle was accidentally broken and replaced, the bottle label 

and volume were updated in the respective spreadsheet. In addition to replicate Niskin 

bottles, at least one sample per cast was analysed in duplicate and whenever a Niskin 

bottle misfired, spare oxygen bottles were used to produce 2 or 3 replicates from 

randomly chosen samples. 

 

4.3 Observations 

Problems encountered and troubleshooting 

The first thiosulphate solution prepared for the cruise (02 May) was standarised with a 

prepared 1.696 mM potassium iodate solution (0.3631 g of KIO3 in 1 L of Milli-Q 

water). However, later calibrations (from 06 May) using certified standards and 

oxygen analysis results from station 12 onwards, suggested that the molarity of the 

prepared KIO3 solution was not accurate (i.e. volumes of thiosulphate used to titrate 

10 ml of prepared and certified standards were very similar, see Table 4.1). This 

problem was further complicated due to an abrupt change in the volumes of 

thiosulphate solution used to titrate certified standards (see Table 4.1). 

 

Calibration No. Date (2005) Blk (ml) STD (ml) Thio (M) 

1 02 May 0.054 0.517 0.215 

2 06 May 0.054 0.512 0.218 

3 10 May 0.051 0.524 0.211 

4 15 May 0.051 0.504 0.220 

5 19 May* 0.051 0.504 0.220 

6 23 May 0.051 0.504 0.220 

7 26 May 0.052 0.503 0.221 

8 31 May 0.051 0.504 0.220 

9 04 June* 0.052 0.502 0.222 

10 09 June 0.051 0.502 0.221 

Table 4.1: CD171 O2 determinations; dates on which thiosulphate calibrations were 

carried out, mean blank titre volume (blk), standard titre volume (STD) and molarity 

of thiosulphate solution (Thio).* Denote dates when new thiosulphate solutions were 

prepared. NB: A prepared KIO3 standard was used for calibration No. 1 and certified 

OSIL KIO3 standards were used for calibrations 2-10. 
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Figure 4.1: Volume of thiosulphate solution added (ml) to titrate 10 ml of a 1.667 mM 

iodate standard and molarity of the thiosulphate solution during the CD171 cruise. 

Black dashed lines indicate when a new thiosulphate solution was prepared. 

 

The  average volume of the thiosulphate used to titrate blanks and standards, and the 

thiosulphate molarity calculated from standardisations was overall constant 

throughout the cruise, suggesting therefore that the thiosulphate solutions prepared 

were stable over the period they were used (Table 4.1, Figure 4.1). Nonetheless the 

first 3 calibrations showed slight differences when compared with the rest of the 

calibrations (i.e. calibrations 4 to 10). These variations, in the order of 10-20 µl of 

added thiosulphate solution, produced significant deviations in the dissolved oxygen 

calculations from the expected values. Given that the same thiosulphate solution was 

used during calibrations 1 to 4, with the 4th being similar to calibrations 5 to 10 (Table 

4.1, Figure 4.1), it would appear that the reason for the change observed (from 

calibration 3 to 4) in the volume of thiosulphate needed for the titration was not 

related to the chemistry involved in the analysis. The problem may have been related 

to the Milli-Q water used during the first calibrations or to the bottles used for the 

calibrations not being clean enough. Thus, the calculation of dissolved O2 

concentrations of all samples before station 44 will need to be reviewed at NOCS.  

NB: After discussing the problems encountered with the oxygen analysis, Brian King 

suggested to correct all oxygen calculations ‘affected’ by using calibrations 1 to 3. 

The correction was done by replacing the blank titre and standard titre volumes in the 

spreadsheets of the ‘affected’ stations, by the blank titre and standard titre volumes of 
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calibration number 4. Few days before the end of the cruise every single spreadsheet 

was twice reviewed, once by Tim Lesworth and a second time by myself. As far as I 

could see, there were no errors left uncorrected in the reviewed files. Finally, all 

corrected files were passed on to Hanna Longworth for her to compile the O2 data set. 

It was further discovered that the tubing and burette of the titration unit were letting 

air into the system and were therefore replaced after station 53. If the air getting into 

the tubes was constant, it would appear that the thiosulphate volume required was 

larger than needed (although this situation was not observed with seawater samples). 

Figure 4.2: Niskin bottle depth-repeats; a) station 50 (average O2 = 148 ± 1.3 µM, 

dashed line), and b) station 99 (average O2 = 274.3 ± 1.3 µM, dashed line). Error 

bars show the standard deviation of replicates. Data from symbols indicated by 

arrows was not considered for calculating average values. The temperature of the 

sample is also shown. 
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Oxygen analysis reproducibility 

Although problems caused by improper mixing of reagents resulted in few profiles 

with inconsistent data, reproducibility of oxygen measurements was overall 

satisfactory. Results from two test stations in which all Niskin bottles were fired at the 

same depth are presented in figure 4.2. The variability of all data points showed on 

each figure represent less than 1% of the mean value. Large deviations of 

concentration values were due to misfired bottles (also evident in the temperature). 

Figure 4.3: a) Replicate measurements from Niskin 6, station 53 (mean O2 = 278.6 ± 

1.9 µM, dashed line). Error bars show standard deviation of replicates. Temperature 

of the samples is also shown. b) Percent difference of replicate determinations 

expressed as:  %Difference = 100 x (replicate2 – replicate1)/replicate1. 
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Replicate measurements were also carried out from a single Niskin bottle and showed 

good reproducibility too, with a variability of less than 1% of the mean oxygen 

concentration (figure 4.3, a). Percent differences of replicates averaged 0.88% (see 

figure 4.3, b) and the variation of triplicate measurements represented 0.70% of the 

mean value. 
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5. Inorganic Nutrients 

5.1 Sampling 

Samples for inorganic nutrient analysis (NO3
- + NO2

-, PO4
3- and Si(OH)4) were taken 

from each CTD cast from station 3. Seawater was collected into 30 ml coulter counter 

vials after samples for CFC’s, He, oxygen, CO2, alkalinity, organic nutrients and 

salinity were drawn. Vials and lids were rinsed several times with seawater before 

sample collection. Samples were stored in a fridge and analysed within 1 to 8 hours. 

 

5.2 Analysis 

Inorganic nutrients were measured by segmented continuous-flow using a Skalar 

Sanplus autoanalyser. This system is set up for analysis and data logging with the Flow 

Access software package version 1.2.5. The analysis was calibrated with a set of 4 

working standards containing nitrate, silicate and phosphate within a concentration 

range as shown in table 5.1. The calibration range however, was modified for silicate 

analysis after station 114 in order to verify that concentrations higher than 40 µM 

were within a linear calibration range. Standards number 1 and 2 were thus replaced 

by a concentration of 60 and 40 µM respectively. 5 mM stock solutions were used to 

prepare working standards every 4 to 5 days. Stock standards were prepared with 

Milli-Q water, but working standards were prepared in a saline matrix (40 g NaCl/1 L 

Milli-Q water also referred to as artificial seawater), which was also used as the 

diluent for the analysis and analytical wash cups. The standards were stored in a 

fridge when not in use. Most CTD casts were analysed in single runs, which consisted 

of a set of standards, wash and drift cups, certified low nutrient sea water in order to 

test for contamination of the matrix and samples. The efficiency of the nitrate 

reduction column (i.e. cadmium column) was tested on a regular basis (2 to 5 days) by 

measuring and comparing prepared and certified nitrate and nitrite standards. Finally, 

the autoanalyser tubing was changed every 7-10 days. 
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 NO3
- Si(OH)4 PO4

3- 

Std 1 40 40 4 

Std 2 30 30 3 

Std 3 20 20 2 

Std 4 10 10 1 

Table 5.1 Set of calibration standards used for nutrient analysis on CD171. 

Concentration units are µM. 

 

5.3 Observations 

Problems encountered and troubleshooting 

On the 3rd day of the CD171 cruise the computer connected to the autoanalyser 

stopped retrieving baseline and peak signals from the integrator. This caused a delay 

with the nutrient analysis and samples from casts 3 to 7 were analysed after a day of 

collection. Although the actual reason for this malfunction was not found, the 

problem appeared to be related with the Skalar Flow Access software since after 

being re-installed communications between detectors, integrator and computer re-

established.  On several occasions the nitrate and phosphate signals exhibited noisy 

baselines. In the case of nitrate, the main reason for this to happen was that fine 

cadmium granules from the reduction column entered the cell. This was easily 

resolved by removing the cell (while covering the light source) and allowing some 

bubbles in for 30-60 seconds. The cell was then placed back and the baseline checked 

before starting a run. In the case of the phosphate line the noise seemed to be due to 

chemicals sticking into cell. This problem was solved by washing the cell with 10\% 

Deacon, Milli-Q water and artificial seawater (\i.e. saline matrix) using a 60 ml 

syringe. It was also observed that when bad weather conditions persisted the signal of 

the three nutrients presented noisy baselines. 

 

Quality control 

The consistency of the analysis was monitored by recording the baseline (digital units, 

DU) and calibration slope (DU/[STD]) of the three nutrients measured over time. The 
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baselines of the three nutrients showed variations with an overall tendency to increase 

as the cruise progressed (Figure 5.1a). The slope of all calibrations changed from run 

to run with no particular trend (Figure 5.1b), even when the same batch of artificial 

seawater and the same set of analytical reagents were used. The slope of the 

phosphate calibration changed more than 30 units after a new batch of reagents was 

prepared (prior to analysis of station 92), and varied around similar values for the rest 

of the cruise (Figure 5.1b, Table 5.2). Although this change was also observed in the 

slope of the other two nutrients, their slope further varied around values observed 

before the change (Figure 5.1). Mean values and standard deviations of baselines, 

calibration slopes and correlation coefficients are presented in Table 5.2. The 

variations observed throughout the cruise seemed to be within the analytical error of 

the method and did not affect the quality of the results in general. 

 

 

Figure 5.1 CD171 nitrate, phosphate and silicate analysis quality control; calibration 

slope and baseline time series (DU = digital units). 
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 NO3
- Si(OH)4 PO4

3- 

Baseline 19528 5474 8079 

 ±324 ±80 ±54 

Calibration Slope 135 188 679 

 ±9 ±4 ±22 

Correlation Coefficient (r2) 0.9887 0.9995 0.9994 

 ±0.0025 ±0.0004 ±0.0006 

Table 5.2 Nutrient analysis; basic statistics of analytical parameters (mean in bold 

characters and standard deviation). Baseline values are digital units (DU) and the 

slope is given by DU / [STD]. Although the mean value of the complete set of data is 

shown, the averaged calibration slope of phosphate was 663±7 before analysis of 

station 91 and 707±7 after analysis of station 92. 

 

The consistency of the analysis was also tested by measuring (in most runs) aliquots 

of deep seawater collected from CTD cast 1 at 5345 m depth. A total of 130 aliquots 

of deep seawater were measured and showed mean values of 20.6 ±0.5, 43.7 ±0.8 and 

1.43 ±0.03 µM of nitrate, silicate and phosphate respectively, and a mean N:P of 14.4 

±0.5 (Figure 5.2). The standard deviation of the mean deep seawater nutrient 

concentrations represents variations of less than 2.5%. 

Figure 5.2 Nutrient concentrations of deep seawater collected from CTD cast 1 at 

5345 m depth, and N to P ratio. 
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To gain further insight into the precision of the method, the variation of the complete 

set of measured standards can be analysed. The results of the more than 200 

measurements carried out per calibration standard are summarised in Table 5.3 and 

shown in Figure 5.3. Although the data plotted in Figure 5.3, particularly higher 

standards, appeared to suggest better precision of the analysis at low standard 

concentrations (i.e. variability seems to be higher at higher concentrations), the 

variability of measurements throughout the cruise represents a precision equal to or 

better than 1.5\% (Table 5.3). 

 

Results from 2 CTD depth-repeat casts are presented in Figure 5.4. Data shown in this 

figure suggests that the repeatability of measurements from a given CTD cast had a 

variation equal to or better than 1.7%. That is, the precision of measurements when 

comparing samples from replicate Niskin bottles was likely better than 1.7%. 

 

 NO3
- Prec. PO4

3- Prec. Si(OH)4 Prec. 

Std 1 40.26 ±0.59 1.5% 3.98 ±0.03 0.7% 40.01/60.07a 

±0.20/0.34 

0.5%/0.5% 

Std 2 29.83 ±0.30 1.0% 3.02 ±0.02 0.6% 30.1 ± 0.14 0.5% 

Std 3 19.98 ±0.22 1.1% 2.02 ±1.02 1.0% 19.96 ±0.08 0.4% 

Std 4 10.00 ±0.14 1.4% 1.02 ±0.02 1.9% 9.98 ±0.06 0.6% 

Table 5.3 Mean value and variation of all standards measured, and precision of the 

analysis. Concentration units are µM. aSilicate calibration range was changed on the 

07 June, just before analysis of station 114 
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Figure 5.3 Complete set of `measured' standards plotted against the `prepared or 

intended' concentration (a, b and c). `Measured' standards plotted against respective 

analysis number (d, e and f). Y-axis on left side panels are the same as Y-axis on right 

side panels. 
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Figure 5.4 Niskin bottle depth-repeats; a) station 50 (average nutrient 

concentrations; NO3
- = 20.72 ± 0.37, Si(OH)4 = 11.23 ± 0.07 and PO4

3- = 1.33 ± 

0.008 µM, dashed lines), and b) station 99 (average nutrient concentrations NO3
- = 

18.83 ± 0.11, Si(OH)4 = 21.07 ±0.11 and PO4
3- = 1.24 ± 0.008 µM, dashed lines). 

Error bars show the standard deviation of the whole set of replicates. 
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In a previous cruise report (Bryden et. al., 2003) it was pointed out that whereas 

nitrate duplicate samples exhibited random variations (i.e. the fact of a second 

replicate producing a relative higher or lower concentration was not systematic), 

duplicate samples of phosphate and silicate showed systematic variations. In the 

CD171 cruise, results showed that differences of triplicate measurements were 

random in the case of nitrate and in most cases silicate and particularly phosphate 

showed no variations (i.e. triplicate measurements produced the same result). 

 

The accuracy of the analysis was tested by measuring a set of OSIL certified 

standards in two separate runs, prepared at a concentration of 20 µM for nitrate and 

silicate and 1 µM for phosphate. Certified standards however, are prepared with 

distilled water and are usually of a comparatively low concentration (e.g. 1000 µM 

Si(OH)4 and NO3
-, and 100 µMPO4

3-). Thus, this analysis may have slight errors, 

since in order to prepare the desired concentrations, relatively large volumes of 

certified standards are diluted with artificial seawater, therefore changing the 

characteristics of the daily used analytical matrix. The first set of standards (n=7) 

were measured on the 11 June and produced the following results: NO3
-=19.87 ±0.11, 

Si(OH)4=21.60 ± 0.04 and PO4
3-=1.03 ± 0.003 µM. This represents an accuracy of 

99.4%, 106.3% and 103.0% for nitrate, silicate and phosphate respectively. The 

second set of standards (n=10) were measured on the 12 June and produced the 

following results: NO3
-=20.47 ±0.14, Si(OH)4=21.60 ±0.05 and PO4

3-=1.01 ±0.006 

µM, which in turn represents an accuracy of 102.3%, 108.0% and 101.0% for nitrate, 

silicate and phosphate respectively. 
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6. Carbon Parameters 

The CO2 parameter analytical equipment was set up in the seagoing laboratory 

container of the Laboratory for Global Marine and Atmospheric Chemistry 

(LGMAC), University of East Anglia (UEA), Norwich, UK. Discrete CTD samples 

were analysed for total inorganic carbon (TIC), total alkalinity (TA), and partial 

pressure of CO2 (pCO2).  Additionally, a continuous, automated instrument for the 

analysis of sea surface pCO2 and atmospheric pCO2 was run throughout the cruise. 

 

Due to the length of time needed for the analyses, generally every second station was 

sampled, apart from the western and eastern boundary currents, where more frequent 

stations were sampled. When a station was sampled, all depths were sampled, with 

the exception of stations 118 and 134, where only the bottom depths were sampled. 

 

Three samples were drawn from each Niskin sampled: a 250 ml and a 500 ml reagent 

bottle for discrete TIC and/or discrete TA, and a 500 ml volumetric flask for discrete 

pCO2. Discrete seawater samples were taken according to Standard Operating 

Procedure 1 (SOP 1) outlined in DOE (1994). Samples were drawn from the Niskin 

bottles immediately after the oxygen samples were taken. All seawater samples were 

taken with Tygon tubing into pre-cleaned bottles and flasks. These were rinsed once, 

filled from the bottom, and overflown once. They were then stoppered without any 

gas bubbles entrapped. The samples were fixed by creating a headspace and adding 

saturated mercuric (II) chloride (HgCl2) solution according to DOE (1994). Samples 

were fixed and stored at ambient temperature in the laboratory container, until prior to 

analysis, when they were brought to 25oC for TIC and TA, and 15oC for pCO2. All 

stations sampled were analysed on board, together with replicates. Only a few 

samples were stored for post-cruise analysis back at UEA. 

 

Replicates samples were taken for all discrete analyses from random Niskin bottles at 

several stations, and run on board for TIC, TA, and pCO2. Additional replicates were 

taken from the ship’s non-toxic seawater supply. 
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6.1 Discrete total inorganic carbon (TIC) 

Total inorganic carbon was analysed by coulometry. All inorganic carbonate is 

converted to CO2 (gas) by addition of excess phosphoric acid (1 M, 8.5%) to a 

calibrated volume of seawater sample. Oxygen-free-Nitrogen (OfN) gas passed 

through soda lime, to remove any traces of CO2, is used to carry the evolving CO2 to 

the coulometer cell. In the coulometer cell, all CO2 is quantitatively absorbed forming 

an acid, which is coulometrically titrated. During CD171, the coulometer was set to 

integrate the titration as counts (CTS), and titration endpoint is set to 4 times 50 CTS 

per 60 sec. 

 

Two systems for the analysis of TIC were on board:  a stand alone TIC analyser 

(TIC_1), and a combined system for TIC and TA (TIC_2), called Versatile Instrument 

for the Determination of Titration Alkalinity (VINDTA, Marianda, Kiel, Germany). 

Both TIC systems use a coulometer (model 5100, UIC Inc, USA), with the maximum 

current adjusted to 50 mA. 

 

TIC_1: The stand-alone TIC analyser consisted of a coulometer and a CO2 extraction 

unit based on the Single Operator Multiparameter Metabolic Analyzer (SOMMA), 

developed by Kenneth Johnson (Johnson et al. 1985, 1987, 1993; Johnson 1992), and 

modified at UEA. 

 

TIC_2: Within the VINDTA system, the analytical method for TIC is the same as the 

stand-alone one, but combined with the analysis of TA (described below). 

 

The accuracy of the TIC analyses was determined regularly by measuring certified 

reference material (CRM), supplied by Dr. A. Dickson of Scripps Institution of 

Oceanography (SIO), Batch #69. No certified values for batch #69 were available at 

the time of completion of the cruise; hence only relative values could be computed. 

Post-cruise work will involve the calculation of absolute TIC values. The CRM 

results are shown in Figure 6.1. 
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Figure 6.1: Results of the TIC analysis of CRM batch 69 throughout the cruise. TIC_1 

and TA_1 were stand-alone instruments, whilst TIC_2 and TA_2 were a combined 

system. 

 

 

Post-cruise work will involve the analysis of the stored samples, which could not be 

analysed on board. A post-cruise calibration of the temperature sensor and the pipette 

volume will also be done, and the sample results recalculated if necessary. 

 

Problems encountered during CD171: 

- a sample memory effect was encountered during the initial stages of the cruise 
on the VINDTA system (TIC_2). This resulted in analyses being affected by 
the previous sample result. Tripling the rinsing time led to the elimination of 
this problem. 
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6.2 Discrete total alkalinity (TA) 

Total alkalinity was determined by the titration of a calibrated volume of seawater, 

equilibrated to 25ºC. Titration was achieved with a strong acid (HCl). The s-shaped 

titration curve produced by potential of a proton sensitive electrode shows two 

inflection points, characterising the protonation of carbonate and bicarbonate, 

respectively. The acid consumption up to the second point is equal to the titration 

alkalinity. From this value, the carbonate alkalinity is calculated by subtracting the 

contributions of other ions present in the seawater, i.e. nutrients. 

 

For this analysis, two VINDTA were used, one working in combined mode with TIC 

analysis (see TIC_2 above ). They are an open cell titration system, with sample 

delivery via a thermostated calibrated pipette. Sample handling and titration is 

program controlled. The titration is carried out using a Titrino (Model 719 S, 

Metrohm, Switzerland). The results are calculated using a non-linear curve fitting 

approach, comparing a calculated curve to the data points and making use of the best-

fit coefficients for alkalinity calculation. 

 

TA_1: VINDTA serial number #4, designed for combined analysis with TIC. 

However, during CD171, it was run only for TA. 

 

TA_2:  VINDTA serial number #7, running in combined mode with TIC (TIC_2). 

The software of this system has been rewritten in VisualBasic 6.0 by Alex Etchells 

(UEA), for easier handling and running of the system. 

 

During CD171, two solutions of 0.1M hydrochloric acid were made up for the 

titrations. Sub-samples of this acid were taken for post-cruise analysis to determine 

the exact concentration. The correct concentration will then be used to recalculate the 

results. 

 

Alkalinity data was calibrated with CRMs, shown in Figure 6.1. However, the 

calculation method is dependent on a realistically estimated ratio of acid factor and 

pipette calibration, since the same calibration factor can also be obtained with various 

combinations of these two parameters, but the quality of the curve fit will be different. 
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Therefore a re-calibration of the pipette and exact calculation of the acid factor will be 

processed post cruise. Changes that would exceed the mean standard deviation of the 

method are not likely. A number of early stations were analysed using an inaccurate 

acid factor. These stations have an incorrect concentration at the end of the cruise. 

Recalculation is required post cruise to enter the correct acid factor and thus obtain a 

corrected result. The nutrient and salinity data will also be included in the post cruise 

processing, together with back calculation of rejected samples. 

 

For the calculation of carbon alkalinity from total alkalinity, the phosphate and 

silicate alkalinity has to be known. This can be done using the separately determined 

nutrient concentrations. However, the contribution is low, for phosphate about equal 

to the phosphate concentration (i.e. 0-3 µmol/kg for open ocean waters), a factor of 10 

lower for silicate. Nutrient data was not available immediately during this cruise and 

therefore not included in the calculations. This will be part of the post-cruise 

recalculation. 

 

Encountered problems: 

- For TA analysis, a problem of sample memory effect was also encountered 
during the initial stages of the cruise. This resulted in analyses being affected 
by the previous sample result. Tripling of the rinsing time led to the 
elimination of this problem. 

 

6.3 Discrete partial pressure of CO2 (discrete pCO2) 

The partial pressure of CO2 in seawater was determined by infrared absorption of CO2 

in a gas stream that was equilibrated with CO2 in a seawater sample at 15oC. The 

system was built at UEA prior to cruise, its design based on the one described by 

Waninkhof & Thoning (1993). 

 

A headspace was created in the 500 ml volumetric flasks by replacing a volume of 

seawater with a gas of a CO2 concentration close to that of the seawater. Six gas 

standards (10 litre, BOC, UK) were available with different CO2 concentrations, 

which had been calibrated against primary National Oceanographic and Atmospheric 

Administration (NOAA) gas standards prior to the cruise. The headspace gas was 

circulated through the seawater sample and the IR detector (LiCor model 6262, 
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LiCor, Inc., USA) until equilibrium was reached, generally after 20 min, whilst 

maintaining close to atmospheric pressure within the loop. If equilibration had not 

been reached, the sample was re-equilibrated. 

 

All gas standards were run after each 12 to 15 samples, in order to calibrate the LiCor 

detector. The precision of the analysis was determined by running replicate samples, 

taken either from Niskin bottles or the ship’s non-toxic seawater supply. 

 

6.4 Continuous partial pressure of CO2 (continuous pCO2) 

The partial pressure of CO2 in surface seawater was determined by infrared 

absorption of CO2 in a gas stream being continuously equilibrated with the CO2 of 

surface seawater. The system used was built at UEA, its design based on the one 

described by Cooper et al (1998). 

 

Seawater from the continuous non toxic supply of RRS Charles Darwin was tee-ed 

off from a high flow (>50 litres/min) bypass, passed through a perculator type 

equilibrator at 5 litres/min. A counter-flow of air was continuously circulated through 

the equilibrator and the detector (LiCor model 7000, LiCor, Inc., USA). At least once 

per hour, the system analysed CO2 in air, pumped in from the foremast. 

 

Gas standards (10 litre, BOC, UK) of CO2 in air were measured throughout the cruise, 

in order to calibrate the LiCor detector. These standards had been calibrated against 

primary National Oceanographic and Atmospheric Administration (NOAA) gas 

standards prior to the cruise. 

 

Under controlled conditions in the laboratory, and during a pool side international 

intercomparison in Japan in 2003, the type of instrument used for this cruise gave a 

precision of ± 0.7 ppm CO2. 
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7. Chlorofluorocarbons (CFC’s) and sulfur hexafluoride (SF6) 

7.1 Sample collection and technique 

Water samples were collected from 20-L bottles used on the cruise to allow for the 

larger volume needed for the CFC-SF6 (~2 litres) sampling in comparison for the 

classical volume needed for CFC’s (~300ml) sampling. The bottles had been cleaned 

prior to the cruise using isopropanol and packed in foam-free boxes for the transport. 

Nitrile 'O' rings were washed in isopropanol and baked in a vacuum oven for 24 

hours. The trigger system of the bottles was external stainless steel springs. Water 

samples were collected in 500 ml ground glass stoppered bottles. The bottles were 

filled from the bottom using a tygon tube and overflowed by ~1 litre to expel all water 

exposed to the air. Immediately after sampling, the glass bottles were immersed in a 

cool box of clean cold deep water until analysed. Ices packs were added as necessary 

to keep the samples cold and prevent degassing. The cool boxes were housed in the 

wet lab whereas the extraction/analysis system was housed in the nearby main lab. 

 

For air sampling, a ¼” OD Dekabon tubing was run from the system to the mast of 

the ship. The air was pump through the line using a DA1 SE Charles Austen pump. 

 

The samples were analysed on board as soon as possible using a coupled SF6 and 

CFC’s system. The design of the coupled system was proposed by Bill Smethie 

[LDEO, 2004, personal communication]. The method combines the LDEO CFC 

method [Smethie et al., 2000] and the PML SF6 method [Law et al. 1994] tied 

together with a common valve for the introduction of gas and water samples. This 

system has the advantage of a simultaneous analysis of SF6 and  CFC’s from the same 

water sample. The water sample flows through and fills a small calibrated volume (25 

cm3) for CFC’s and large calibrated volume (300 cm3) for SF6. Then there is a 

separate purge and trap system for CFC’s and SF6. Each purge and trap system is 

interfaced to an Agilent 6890 gas chromatograph with electron capture detector (GC-

ECD). The samples were stripped with N2 and the  CFC’s and SF6 were respectively 

trapped at ~ -80°C on a Unibeads and aPorapak Q cold trap immerged on the 

headspace of liquid nitrogen. Then the traps were heated to 105°C for  CFC’s and 

90°C for SF6 and injected into the respective gas chromatograph. The SF6 separation 
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was achieved using a molecular sieve packed 2m main column and 1m buffer column. 

The  CFC’s separation was achieved using a 1m Porasil B packed pre-column and a 

1.5m carbograph AC main column. The carrier gas was pure nitrogen, which was 

cleaned by molsieve (13X mesh 80/100). 

 

 Tank AAL-70508 

 Mixing ratio Std Dev Scale 

SF6 9.78 ppt 0.08 2000 

CFC-12 534.48 ppt 1.2 2001 

CFC-11 253.4 ppt 0.6 1992 

CFC-113 80.6 ppt 0.2 2002 

CCl4 95.4 0.3 2002 

Table 7.1 

 

7.2 Calibration 

The  CFC’s/SF6 concentrations in air and water were calculated using an external 

gaseous standard. The standard supplied by NOAA (Brad Hall, February 2005) 

corresponds to clean dry air slightly enriched in SF6, in 29L Aculife-treated aluminum 

cylinders (Table 7.1). The calibration curves were made by multiple injections of 

different volumes of standard that span the range of tracers measured in the water. 

Examples of fitting calibration data are given Figure 7.1. Complete calibration curves 

were made approximately every 2 days whereas the changes in the sensitivity of the 

systems were checked by measuring a fixed volume of standard gas every 10 runs 

(Figure 7.2). The temporal drift of the ECD between two calibration curves was 

assumed to be linear in time. 

 

7.3 Contamination and blank correction 

The blank correction is to compensate for any trace  CFC’s/SF6 originating from the 

sampling bottles, handling and from the measurements procedure. This correction is 

normally estimated from the samples collected in waters that would be very likely 

free of  CFC’s. Zero CFC water was not observed in the Western Basin and it was not 

possible to determine a sample bottle blank until we reached the water~ 5000m deep  
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Figure 7.1: Examples of calibration curves (14/06/2005) to convert the ECD signal 

(peak area) in concentrations. 

 

 

 Figure 7.2: The temporal evolution of the CFC’s ECD-response during the cruise for 

the 1.5 ml volume 
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at stations 112-114 in the Eastern Basin. The tracer levels found there were 0.01-0.02 

pm/kg for CFC-11 and CFC-12 and below detection limit for SF6. These levels were 

the lowest of the all cruise and they were use as the background bottle blank for all 

the bottles and the entire cruise. They could be an over-estimate and this needs to be 

studied in more detail. 
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 Figure 7.3: Relative bottle contamination for each Niskin estimated by stripping the 

entire rosette at a single depth at station 50 near the 900m tracers minimum. 

Relative bottle contamination for each Niskin was estimated by stripping the entire 

rosette at a single depth at station 50 (Fig. 7.3) near the 900m CFC’s minimum and by 

samples drawn from neighbouring Niskins closed at the same depth. 

From station 76, the use of an old RS contact spray on the CTD cables lead to CFC’s 

contamination of the nearby hydrographic bottles. It mostly affected the bottles 

CFC-11 pmol/l at Station 50 (Y error bar is 0.01 pmol/l, average in red line)

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54

1.56

1.58

1.6

0 5 10 15 20

Bottle number

C
F

C
-1

1
 C

o
n

c
e

n
tr

a
ti

o
n

 p
m

o
l/

l

CFC-12 versus  CFC-11 at station 50

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6

CFC-11 Concentration (pmol/l)

C
F

C
-1

2
 C

o
n

c
e

n
tr

a
ti

o
n

 (
p

m
o

l/
l)

19

7

12
13 9



73 

number 8 and 9 placed just above the cables, and in decreasing levels as we go further 

from the cables, the bottles 7-6 and 10-11. Due to this activity, several profiles 

(mostly Station-No. 76, 78, 80) were badly disturbed, primarily in CFC-113, then 

CFC-12 and CFC-11. By firing suspected contaminated bottles and uncontaminated 

bottles at the same depth, we tried to follow and estimate the contamination. It 

showed that after the incident, the contamination decreased slowly with the number of 

stations. Before station 87 the O’rings of the contaminated bottles were replaced 

however it did not erase the contamination problem. 

 

7.4 Precision 

The precision of the measurements was determined from duplicate samples drawn on 

the same Niskin. The average standard deviation for 43 pairs of duplicates was 0.006 

fmol/kg for SF6 and 0.004 pmol/kg for both CFC-11 and CFC-12. 

 

7.5 Instruments interference 

The radiowaves of the VHF used in the main lab to communicate with the deck 

appeared to affect the signal of the electron capture detectors. It resulted in negative 

peaks of the ECD baseline. This activity affected mostly the SF6’s ECD placed 

around 4 meters away from the CTD controls. Luckily, CFC’s ECD was shielded 

behind the other GC. To avoid this interference we tried to time an elution of the SF6 

peak outside the time of use of the VHF. However 2% of the SF6 data were lost due to 

this problem. 

 

7.6 Performance 

The setting up of the new SF6- CFC’s system encountered several problems and the 

first reliable SF6- CFC’s analysis could be carried out at CTD station 17. During the 

rest of the cruise, the system worked nearly continuously (2 stops of 48 hours where 

due to a failure of the liquid nitrogen generator and a stop of 24 hours to a failure of 

the CFC’s system). In total, 1386 water samples were analysed on 82 CTD stations.  
 

Marie-José Messias  
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8. Helium and Tritium 

8.1 Introduction 

In order to complement other transient tracer measurements along 36N it was decided 

to collect samples for the measurement of helium and tritium. Tritium is the common 

name for hydrogen-3 (3H), which is a radioactive isotope of hydrogen. Tritium is a 

transient tracer that occurs naturally in the ocean in concentrations of 0.2-0.5 TU (one 

tritium unit (TU) equals 1 tritium (T) atom in 1018 hydrogen  (H) atoms or 1 TU = 

1*10-18(T/H)), although much larger amounts entered the ocean during the bomb tests 

of the 1950s and 1960s. In order to improve the quantitative accuracy of tritium 

measurements they can be combined with simultaneous measurements of tritium’s 

daughter product helium-3 that is only found in non-zero concentrations in the interior 

of the ocean. Thus a ‘tracer age’ can be determined which can be determined which is 

the equal to the length of time since the water was last at the surface (Jenkins and 

Clarke, 1976). 

 

To make best use of available resources it was decided to sample intensively in the 

western boundary region and then one station every second or third day across the 

remainder of the section. 

 

8.2 Method 

Helium 

Glass and plastic are permeable to helium so samples for helium analysis were 

collected in soft coil dehydrated copper pipe. Prior to arrival on station 70cm long 

pieces of copper pipe2 were cut from a 20m coil and dented 14cm either side of the 

centre point. On station samples for helium analysis were drawn immediately after 

those drawn for CFC’s and before those drawn for oxygen. Water was drawn from the 

                                                
2 Although initially cut to 70cm it was later found that by using 68cm of pipe it was 

possible to cut 29 pieces of copper from a 20m coil rather than 28. 
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Niskin bottles through a piece of tubing attached to the end of the pipe and then 

allowed to drain through a second piece of tubing attached to the top of the copper 

pipe. In order to fill the pipe smoothly, and to flush out bubbles, the pipe and tubing 

were initially held higher than the water level in the Niskin before being lowered 

slowly.  Any remaining bubbles were removed by massaging the tubing and tapping 

pipe with a wooden bat. The tubing was then clamped approximately 10cm from 

either end of the copper pipe using metal clamps. Whilst holding the tubing onto the 

pipe the ends and middle of the copper pipe were crimped using a hydraulic pump 

effectively creating three cold welded ends and producing two 29.5cm samples. These 

were then re-rounded to create a partial vacuum before being wrapped in bubble wrap 

and stored for analysis ashore. 

 

Tritium 

One-litre bottles were used for the collection of samples for tritium analysis. These 

were prepared the previous December in Liverpool by baking them in an argon 

atmosphere after which the bottle lids were taped on to prevent loosening during 

travel. 

 

Tritium was the last sample to be drawn from the Niskins and samples were taken 

from each bottle where a helium sample had been taken. Tubing was inserted into the 

mouth of the bottle and the bottles were filled to within a few centimetres of the top 

so that some of the argon atmosphere remained. The bottle lids were re-taped and the 

bottles packed for analysis ashore. 

 

Each sample was labelled with the cruise number, the station number and the Niskin 

bottle number from which it was drawn. The two copper pipes were additionally 

labelled A and B for easy identification.  One duplicate sample (1 bottle and 70cm 

copper pipe) was drawn at each station and these were labelled with successive letters 

of the alphabet. 

 

Care was taken to ensure that nobody in the sampling region wore luminous dial 

watches, which contain tritium and are thus a severe contamination risk. However it 
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was noted that there was a tritiated emergency sign at one end of the wet lab, where 

copper preparation and bottle taping took place. 

 

8.3 Samples 

In total 19 stations were sampled for helium and tritium involving the collection of 

234 complete samples (see Table 8.1 for details).  Nine of these were ‘deep’ stations 

(the first sample being drawn from a depth of over 2000m). In the western boundary 

samples were taken every day and attempt was made to locate two in the Gulf Stream 

and one in the Deep Western Boundary Current. After station 30 stations were 

sampled every two-three days with the sampling taking place during the 20:00 – 

00:00 or the 00:00 – 04:00 watch. 12 helium samples had to be discarded due to 

leaking copper pipes and tubing ‘popping’ off the end of the pipe and 5 tritium 

samples were not completed due to the Niskin running out of water. After station 6 all 

the samples were drawn by Susan Leadbetter who had been given about 2 hours 

training in March by Claire Postlethwaite. All physics watch keepers assisted with the 

cold welding and re-rounding of the pipes. 

 

References 

Jenkins, W.J., and W.B. Clarke, The distribution of 3He in the western Atlantic 

Ocean, Deep-Sea Res., 23, 481-494, 1976 
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Station Latitude 

(N) 

Longitude 

(W) 

Depth of 

deepest 

Sample 

Number of 

Complete 

Samples 

Additional 

part samples 

Comment 

6 36 35.08 070 18.85 4044 14 3pip 4bot Deep 

10 37 11.13 071 26.02 4063 17  Deep 

13 37 36.33 072 17.04 3405 15  Deep 

21 35 29.80 074 01.30 3031 15  Deep 

27 35 24.99 072 24.99 4324 17 1pip 1bot Deep 

30 35 49.91 070 48.02 4500 15 2pip 1bot Deep 

36 36 14.90 067 19.10 2031 12   

45 36 16.16 061 45.82 2019 12   

56 36 14.90 054 42.20 2029 11 1pip 1bot  

64 36 15.05 048 07.99 5512 16 1pip 1bot Deep (W 

Atl.) 

72 36 17.97 041 56.02 2014 12   

82 36 14.95 035 48.68 2797 10 8pip MAR 

95 36 14.08 027 50.11 2026 12   

106 36 14.90 022 21.16 2031 11   

111 36 15.51 019 17.04 5587 15 3pip 3bot Deep (E 

Atl.) 

119 35 59.77 014 58.00 2024 11 2pip  

125 35 48.56 011 11.60 2028 11 2pip  

133 36 28.34 008 44.28 1523 11 1pip 1bot  

141 34 35.10 007 49.50 2316 12  Med 

outflow 

   TOTAL 234   

Table 8.1: List of Sampled Stations for Helium and Tritium 

Key: pip refers to one 22cm length of copper pipe 

bot refers to one 1l sample for tritium analysis 

 

Susan Leadbetter 



78 

9. Organic Nutrients 

Introduction 

The North Atlantic Ocean consists of a double-gyre system, a sub-polar and a 

subtropical gyre, driven by wind forcing.  Over the subtropical gyre it is unknown 

how the nutrient budgets of nitrogen (N), phosphorus (P) and carbon (C) are closed. 

 

It has long been recognised that inorganic nutrients such as nitrate and phosphate are 

essential in maintaining primary production within the world’s oceans, and are 

required by phytoplankton to build biomolecules such as proteins.  Nitrogen and 

phosphorous also occur as dissolved “organic” species, often in higher concentrations 

than their inorganic counterparts.  Dissolved organic nutrients comprise material 

ranging in size from simple monomeric molecules to complex macromolecules, and 

chemically from labile monomers, such as urea and amino acids to refractory 

macromolecules (Jackson and Williams, 1985).  The nutritive properties of dissolved 

organic nitrogen (DON) and dissolved organic phosphorus (DOP) depend on the 

chemical composition of the pools.  It is necessary to characterise the components of 

these pools in order to assess their importance in the nutrient budgets.  Furthermore, 

to close these budgets the supply of nutrients must also be investigated.  In common 

with N and P, the transport of dissolved organic carbon (DOC) might be important in 

closing the C budget over the North Atlantic. 

 

Objectives 

In order to help close the nutrient budgets, the concentrations of DON, DOP and DOC 

must be determined.  To characterize part of the DON pool, samples will be analysed 

for amino acids, with the ratio of the D- and L- enantiomers examined.  The sources 

of organic nutrients will be investigated through the use of stable nitrogen isotopes. 

 

Sampling 

Samples were collected for TON, TOC, TOP, DON, DOC, DOP, amino acids and 

Stand Alone Pump (SAP) filters at the following stations (Table 9.1). 



79 

Station 

 

Date 

 

Lat  

(°N) 

Long  

(°W) 

SAPs 

 

Test  

Station 02/05/2005 34.4296 -66.4158 No 

3 03/05/2005 36.1397 -69.0724 No 

6 04/05/2005 36.3508 -70.1885 Yes 

8 05/05/2005 36.5249 -70.5209 No 

9 05/05/2005 37.0194 -71.0885 No 

10 05/05/2005 37.1054 -71.2519 No 

12 06/05/2005 37.269 -71.57 No 

13 06/05/2005 37.3619 -72.1208 No 

14 08/05/2005 36.0082 -74.4882 No 

15 08/05/2005 35.597 -74.4776 No 

17 08/05/2005 35.5704 -74.4451 No 

20 08/05/2005 35.3837 -74.1608 No 

21 09/05/2005 35.3152 -73.5649 Yes 

24 09/05/2005 35.2324 -73.4372 No 

25 10/05/2005 35.1016 -73.2677 No 

27 10/05/2005 35.2547 -72.2252 No 

29 11/05/2005 35.4213 -71.2002 No 

30 11/05/2005 35.4997 -70.4795 No 

32 12/05/2005 36.0783 -69.3977 No 

33 12/05/2005 36.1619 -69.0605 No 

36 13/05/2005 36.1537 -67.1922 Yes 

39 14/05/2005 36.147 -65.278 No 

42* 15/05/2005 36.1538 -63.3832 No 

45 16/05/2005 36.166 -61.4752 Yes 

47 17/05/2005 36.1448 -60.3181 No 

52 18/05/2005 35.0051 -58.0488 No 

Station 

 

Date 

 

Lat  

(°N) 

Long  

(°W) 

SAPs 

 

54 19/05/2005 36.1241 -56.2645 No 

56* 19/05/2005 36.1489 -54.4196 Yes 

60 21/05/2005 36.388 -51.2607 No 

64 22/05/2005 36.1498 -48.0792 Yes 

66 23/05/2005 36.1498 -46.2802 No 

68 24/05/2005 35.1538 -44.4975 No 

72 25/05/2005 36.1798 -41.56 Yes 

75 26/05/2005 36.1529 -40.0569 No 

78* 27/05/2005 36.1458 -38.1635 No 

82 28/05/2005 36.149 -35.4868 Yes 

87 29/05/2005 36.147 -32.4539 No 

90 30/05/2005 36.1467 -30.5623 No 

95 31/05/2005 36.1405 -27.5012 Yes 

98 01/06/2005 36.1519 -26.0191 No 

102* 03/06/2005 36.15 -24.4909 No 

106 04/06/2005 36.1501 -22.212 Yes 

109 05/06/2005 36.1502 -20.3195 No 

111 06/05/2005 36.1506 -19.1803 Yes 

114 07/06/2005 36.149 -17.28 No 

115 07/06/2005 35.1557 -16.5174 No 

119 08/06/2005 35.5979 -14.5803 Yes 

121 09/06/2005 35.4763 -13.5881 No 

125 10/06/2005 35.486 -11.1161 Yes 

127* 11/06/2005 35.5445 -9.4754 No 

135* 12/06/2005 36.3839 -8.3972 No 

141 13/06/2005 34.3493 -7.4924 Yes 

Table 9.1:  Stations sampled for organic nutrients. 

*denotes stations where duplicate samples taken 
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Methods 

Dissolved and Total Organic Nutrients and Amino Acid Collection and Storage 

Samples were collected directly from the CTD Niskin bottles into prepared 500ml 

wide mouthed Nalgene bottles, after rinsing 3 times with the sample water.  Samples 

were filtered using an all glass single flask filtration unit and 47mm 0.7µm GF/F 

filters. These filters were retained for possible further analysis at the National 

Oceanographic Centre (NOC). The subsequent filtrate was transferred into a 60ml 

prepared polypropylene pot and placed in a -80°C freezer until analysis using a Skalar 

SanPlus autoanalyser at NOC.  Samples for DOC and DON analysis were transferred 

into a muffled 20ml glass ampoule and fixed with 20µl of 50% HCl before flame 

sealing.  These will also be analysed at the NOC using a High Temperature Oxidation 

(HTO) machine.  Samples for TOP, TOC and TON were treated in the same manner 

with filtering excluded.  TOP samples were stored in 60ml sterilin pots and 

TOC/TON samples stored fixed in flame sealed 5ml glass ampoules.  Samples were 

taken from six to twelve depths at each station, with higher resolution in the surface 

waters. 

 

Six to twelve amino acid samples from varying depths were collected at stations 

corresponding to those where SAPs were deployed.  These samples were filtered in 

the same way as the organic nutrient samples and collected in 28ml muffled glass 

vials.  Samples were then placed in a -80°C freezer.  These will be transferred to the 

University of Liverpool for analysis by High Performance Liquid Chromatography 

(HPLC). 

 

Stand Alone Pumps (SAPs) 

SAPs were deployed at a frequency of approximately every third day throughout the 

cruise.  Three SAPs were pumped for 2 hours at each station at depths of 50m, 100m, 

and 150m with the intention of being able to capture the chlorophyll maximum.  Filter 

beds were loaded with muffled 293mm 0.7µm GF/F filters (c.f. Section 11 

Instrumentation). Once recovered the filters were placed in muffled foil, and dipped 

in liquid nitrogen to enable pigment analysis.  Samples were then placed in a -80°C 

freezer.  Filters will be transferred to the University of Liverpool to investigate 
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nitrogen isotopes, pigments, and for C and N analysis.  A total of 13 stations were 

sampled along the transect. 

 

Results 

No results are currently available, as water samples for organic nutrients will be 

stored until analysis at the NOC.  Analyses of SAP filters collected and amino acid 

water samples will take place at the University of Liverpool.  Data analysis will 

hopefully be completed within a year. 

 

References 

Jackson G. A. and Williams P. M. (1985) Importance of dissolved organic nitrogen 

and phosphorus to biological nutrient cycling. Deep-Sea Research 32(2), 223-

235. 

 

Rhiannon Mather 
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10. Atmospheric Sampling 

Introduction 

Atmospheric sampling on CD171 was carried out for aerosols and gas phase ammonia 

along 36N between 1st May and 15th June 2005. Aerosols (particulates suspended in 

the atmosphere ranging in size from 0.1-100 µm diameter) were sampled using two 

high volume (1 m3 min-1) samplers. Gas phase ammonia was sampled using a low 

volume vacuum pump with filter packs.  Rainwater was also collected at every 

opportunity to assess wet deposition. 

 

Sampling Procedure 

Two separate high volume samplers were used to sample aerosols: one sampler was 

loaded with paper substrates for major ion analysis of aerosols, the other loaded with 

quartz fibre substrates for analysis of organic carbon and nitrogen. In preparation for 

the cruise the quartz fibre filters were ashed in a muffler oven at 400°C for four hours 

to remove any organic substances that may have initially been on the filters, they were 

then packed in aluminium foil for transport and storage. Paper filters were taken 

straight form the manufacturers packaging. 

 

Sampling of aerosols was done using slotted filers and backup filters with a six-stage 

cascade impactor. For normal sampling on CD171, only plates three and four of the 

cascade impactor were used. This was in order to split the size range of aerosol 

particles collected, with the > 1 µm fraction being collected on the slotted filters 

between the impactor plates and the < 1 µm fraction being collected on the backup 

filter. Filters were handled, loaded in to and removed from the cascade impactors 

whilst wearing gloves in a laminar flow hood situated in the ship’s main laboratory to 

prevent dust contamination. They were sealed in zip-loc bags for transportation to the 

samplers (located on the wheelhouse roof). 

 

The samplers were fitted with a chart recorder for recording flow rate and duration 

and also have an analogue count that counts as long as the motor is running. A new 

chart was fitted at the beginning of each 20-24 hour sampling period and the count 
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recorded, time, date and position were also noted. Recording the number on the 

analogue count was done so that if a motor failed, there was a record of how long the 

sampler was active for (this is also replicated on the chart recorder). The samplers 

were calibrated to give a flow rate of 1 m3 min-1, calibration was performed twice 

during the cruise, once at the start (31st April, day 120) and once half way through 

(24th May, day 144). 

 

Ammonia sampling was performed using a low volume vacuum pump with filter- 

packs (Figure 10.1). Each filter-pack holds three filters and is fitted with a cyclone 

separator for separating out large particles. The filters used with the filter packs are 

4.7 cm diameter, the first of the three filters is a 1 µm PTFE filter for the removal of 

large particles, the second an third filters are paper filters soaked in a 0.1M oxalic acid 

solution. The filters are soaked in the acid, loaded in to and unloaded from the filter-

packs in a glove box, which is supplied with air filtered through an additional acid 

soaked filter in an attempt to eliminate contamination from background ammonia in 

the lab. The glove box was set up in the main laboratory and the filters were 

transported between the main lab and low volume system in sealed zip-loc bags. 

 

 

Fig 10.1. Filter-pack used for ammonia sampling 

 

Initially an electrical flow meter was used with the ammonia system, however after 

three days this became clogged with the oxalic acid solution and was damaged 

beyond repair. It was replaced with a mechanical flow meter. 
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After sampling the paper aerosol filters were folded in two and sealed in zip-loc bags 

and the same procedure was applied to the quartz samples, which were re-wrapped in 

aluminium foil to prevent contamination from the organics in the bags. All the filters 

from the ammonia system were placed individually in 15ml centrifuge tubes and 

sealed in two zip-loc bags. All filters were stored frozen in a -20ºC chest freezer for 

later analysis at UEA. 

 

Rainwater was simply collected using a funnel and frozen for analysis at UEA. 

 

Equipment Set-up and Progress 

Main Lab  

Equipment used in the main lab was a glove box (supplied by UEA), a laminar flow 

cabinet (supplied by UKORS) and a fume cupboard (supplied by UKORS). The glove 

box and flow cabined were used as described above. The fume cupboard was used for 

making the oxalic acid solution from oxalic acid, methanol and glycerol. The fume 

cupboard was used once a week to make a new batch of acid solution. Also in the 

main lab there was a repeater monitor for the ship’s surfmet system, which was useful 

for monitoring wind direction. 

 

Monkey Island (Wheelhouse roof)   

All the samplers were set up on the monkey island. They run of a 240V power supply 

and to be used were insulated to IP65 standard. They were plugged in inside the 

scientific plot and extension leads were lead through a duct on the wheelhouse roof. 

For this kind of work onboard RRS Charles Darwin it is necessary to bring sufficient 

extension lead to be able to plug in up to four electrical components up to 40m away 

from their power supply. The samplers are situated on the monkey island because this 

is the highest point of the ship and receives the cleanest air. If there was a relative 

following wind, the samplers were switched off to avoid contamination from the 

ship’s funnel. One thing that was noted during the cruise is that the galley and bow 

thrust exhausts are both forward of the monkey island, the contamination effects of 

this are unknown at present.  Access to the monkey island is by vertical ladder, on the 

orders of the ship’s Master this meant the samplers could not be accessed in the dark 

and turning them off could only be done by pulling the plugs in the ship’s plot. 
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Rainwater Sampling 

Rainwater sampling was performed by lashing a length of drainpipe to the ship and 

securing a funnel and a sample bottle in it whenever it rained.  Because of limited 

access to the monkey island and the difficulty of carrying a funnel up a ladder, two 

pieces of drainpipe were lashed behind the bridge wings, allowing for sampling on 

either side of the ship depending on the direction of the wind. The sample bottles and 

funnel were stored in the ship’s plot so as to be close at hand. Using this setup there 

was still the potential for water to drip from the ship’s superstructure in to the sample 

bottles. A list of rainwater samples taken can be seen in Table 10.1. 

 

Sample Julian Day Time (GMT) Latitude Longitude 

1 BLANK 

2 ABANDONED DUE TO LIGHT RAIN 

3 124 0505 36 25.48 69 57.21 

4 124 1405 36 38.08 70 16.78 

5 124 1932 36 44.52 70 09.34 

6 126 1440 37 36.08 72 12.00 

7 ABANDONED DUE TO BAD WEATHER 

8 140 0321 36 28.92 50 18.56 

9 140 0331 36 28.92 50 18.56 

10 140 0350 36 28.92 50 18.56 

Table 10.1 Positions of Rainwater Samples Taken 

 

Progress on CD171  

Progress on CD171 was very satisfactory. In order to ensure clean air enters the 

samplers, sampling can only be carried out when the wind approaches the ship 

forward of the beam. When on station this was not generally a problem as the ship 

was hove-to head to wind at the vast majority of stations. Underway sampling was 

problematic for the first two weeks of the cruise as we experienced westerly winds. 

The situation improved over the last four and a half weeks of the cruise as we 

experienced southeasterly and northeasterly winds, providing a headwind all the time. 
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A total 34 days sampling of at least 19 hours were achieved over the cruise’s 45 day 

duration. Duration and dates of these samples can be seen in below in Figure 10.2. 

Fig10.2. Plot of days on which samples were collected and duration of sampling. 

 

Tim Lesworth 
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11. Instrumentation 

11.1Miscellaneous 

11.1.1 Salinometer 

Two Guildline Autosals, model 8400A, s/n 56747 (UKORS/NMEP) and one from 

JRD were used throughout the trip. A total of 2910 salinity samples were analysed. 

The salinometers were sited in a temperature-controlled lab, with an ambient 

temperature setting of approximately 20°C. Unfortunately the CT Laboratory 

controller was unable to fix the ambient temperature without leaving the door to the 

lab open, resulting in some variability to the air temperature. The cooling/exhaust fan 

on s/n 56747 failed during the cruise, and was replaced with a similar unit loaned 

from RSU. Spare fans were ordered for the following trip. Several minor repairs 

(tubing replacement, etc.) were carried out to the peristaltic pumps. 

 

11.1.2 RO and Milli-Q water systems 

OED system serial numbers 003 and 004 were installed in the wet lab prior to sailing, 

and were operated with minimal problems for the duration of the cruise. Two chlorine 

cleaning cycles were performed, and 4 pre-filters used. On JD125 the RO12 pre-

treatment pack began to leak, and upon investigation it was discovered a pressure 

fitting had cracked. No replacement fitting was on board, thus a temporary repair was 

initiated by applying gasket sealant to the threads, which halted the leak. One-half of 

the installed RO pack was consumed and turned around for replacement, and one-half 

of a new pack was installed at the end of the trip. 

 

11.1.3 Stand Alone Pumps 

A total of 13 SAP casts were completed on the trip, consisting of the following 

configuration: 

 

SAP s/n 002-02: pump time = 2 hours, typical depth 50 metres 

SAP s/n 03-02: pump time = 2 hours, typical depth 100 metres 

SAP s/n 03-03: pump time = 2 hours, typical depth 150 metres 
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Throughout the trip the individual SAP’s were alternated at random to pump at the 

three different depths, in order to track specific pump performance. The SAP’s were 

deployed from the starboard gantry, utilising the hydrowinch and wire. The Rexroth 

“tugger” winch was engaged for lifting the pumps on and off the wire. All pumps ran 

properly according to the pre-set timer and delay boards; volumes filtered were 

appropriate to the depths, filters and time operated, with the exception of a timer 

board failure (vibration caused the board to loosen) on s/n 002-02 for cast 056, and a 

pump operating failure for cast 064, cast 106 and cast 141. This specific SAP is 

operated by the newest version timer board, and requires that the timer delay has been 

properly begun prior to deploying. 

 

11.1.4 Liquid Nitrogen Generator 

Installed in the air gun annexe prior to sailing. The nitrogen generator supplied 

between 4 and 12 litres of liquid nitrogen per day as required, and functioned 

satisfactorily throughout the cruise, with two notable exceptions. 

 

Firstly, about one week into the cruise, the nitrogen gas regulator was found to have 

been tampered with. The whole regulator body had been unscrewed, presumably in an 

attempt to adjust the locked regulator hand wheel. This caused the helium compressor 

to be running whilst there was no or insufficient nitrogen gas supply to the Dewar. 

 

The regulator was re-assembled and correctly adjusted, but on re-starting the machine 

the liquid nitrogen level gauge was found to be no longer functioning. It is assumed 

that ice had formed in the level gauge tubes due to air entering the Dewar whilst the 

nitrogen gas supply was interrupted. 

 

Due to the constant demand for liquid nitrogen it was not possible to allow the Dewar 

to warm up in order to clear the blockage in the level gauge. The liquid nitrogen level 

was monitored daily from this point, and the helium compressor started manually to 

produce liquid nitrogen as required. 
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In the second instance the burst disc, which protects the Dewar, was found to have 

failed. There were no obvious signs of over pressurisation due to incorrect nitrogen 

regulator adjustment, and the pressure relief valve was found to be in working order. 

The burst disc was removed, and replaced with a solid plug. 

 

The above incidents resulted in the loss of liquid nitrogen supply for approximately 

twenty-four hours on each occasion. 

 

On future cruises suitable spare flasks could be used to store excess liquid nitrogen 

production, thus allowing maintenance and repairs to be performed without 

interrupting the supply of liquid nitrogen to the scientists. It should be noted that the 

nitrogen generator can take two or three days to cool to working temperature when 

first started. An alternative supply to cover this start up period may be required on 

some cruises. A degree of “tamper proofing” to the compressed air and nitrogen 

regulators should be considered. 

 

11.2. Fixed Equipment 

11.2.1. Simrad EA-500 

The echo sounder had no working problems; the HP colour printer was tested and 

operated normally during the cruise. Serviced a cooling fan in the deck unit. Spare 

fans ordered. 

 

11.2.2 PES towed body 

The “fish” was deployed from the beginning of the cruise, and operated successfully 

throughout. Three lengths of fairing were torn and replaced. 

 

11.2.3. Chernikeeff EM Log 

The EM Log was operated throughout the cruise with no apparent problems, after 

recalibration by B. King by applying calculated speeds from the VMADCP (see 

Section16.6). 
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11.2.4. VMADCP 

VM-DAS was installed with the cruise specific parameters modified upon departure. 

The air breather pipe work is damaged at the through-hull installation, and the ball 

valve may be corroded internally. Air was bled from the system by opening the pipe 

coupling fitted to the top hat. Suggest pipe work be replaced with stainless steel 

fittings. The data quality was compromised by not being able to properly bleed air, 

moisture and debris from the system. Beam 3 failed during the cruise, and Beam 1 is 

weak. A separate report has been compiled regarding the Beam failures (see Section 

16.2). 

 

11.3 SurfMet 

The SurfMet system was installed for this cruise in the following configuration: 

TSG system: 

housing temperature FSI OTM s/n 1361 

remote temperature FSI OTM s/n 1370 

housing conductivity sensor FSI OCM s/n 1358 

flow-through 20cm transmissometer WetLabs/SeaTech s/n T-1019D 

flow-through fluorometer WETLabs s/n WS3S-134 

 

All the above sensors are calibrated with the exception of temperature and 

conductivity that have their calibration stored internally. Rhopoint DGH converters 

are used to give +/- 5 volts for the transmissometer and fluorometer data. The 

transmissometer and fluorometer were cleaned at weekly intervals throughout the 

cruise, with air and blank values recorded pre- and post-cleaning to monitor sensor 

drift. 

 

Met system: 

air temperature/relative humidity Vaisala HMP44L s/n S504004 

barometric pressure Vaisala PTB100A s/n S3440009 

port PAR sensor Didcot/ELE DRP-5 s/n 5143 

starboard PAR sensor Didcot/ELE DRP-5 s/n 5144 

port TIR (pyranometer) sensor Kipp & Zonen s/n 962276 

starboard TIR (pyranometer) sensor Kipp & Zonen s/n 962301 
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anemometer Vaisala WAA s/n P22306 

wind vane Vaisala WAV s/n R21213 

 

The wind speed and direction are not calibrated; all other meteorological sensors have 

calibrations. The wind direction is oriented with 180 degrees on the bow; this is to 

ensure averages over the thirty-second period are not affected by fluctuations between 

0 and 360 degrees whilst on station. Met system data is collected through a Vaisala 

QLI50 sensor collector. All SurfMet data is polled once every second; a thirty second 

average is then taken and sent to the OED shipboard data collection for application of 

calibration constants. In addition, salinity is calculated using the housing temperature 

and conductivity sensors, and calibrated throughout the cruise by salinity samples. 

 

Sensor Changes: 

The humidity sensor gave erratic readings and eventually failed. The sensor was 

investigated during the port-call in the Azores, and replaced with s/n S5040001. 

The TSG conductivity sensor was changed on day 129 19:00, s/n 1358 was removed 

and s/n 1341 was fitted. 

 

Jeff Benson 

Bob Keogh 

Dave Teare 
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12. Underway Salinity Samples 

Sampling 

Unless the ship was on station samples were taken every four hours, ship’s time, from 

the ship’s underway water supply. The supply was allowed to run for at least a whole 

minute before each sample was drawn in order to flush water through the system. The 

sample was then bottled as described in Section 3. The time and date at which each 

sample was taken was duly recorded. 

 

TSG sensor 

Initially the TSG conductivity sensor (serial number 1358) was calibrated by a 

constant offset, i.e. the instrument itself was calibrated. Although this calibration was 

found to be sufficient to begin with, on crossing the Gulf Stream we entered a regime 

of low conductivity surface water and the constant offset was found to be inadequate 

at this conductivity range. 

 

As a result the sensor was replaced with serial number 1341 on Julian day 129 (9th 

May) at 19:13 ship’s time. This sensor was, and remained throughout the cruise, 

uncalibrated. Details of the calibration applied to the data from this instrument are 

given below. 

 

Processing 

The pstar routines navexec0, navexec1, surexec0 and surexec1 were used to obtain 

the TSG data from the ship’s surfmet data along with corresponding navigation data. 

These routines were executed daily. The pstar program plxyed was used to examine 

and then despike where necessary the conductivity record produced by surexec0 

before salinity was calculated in surexec1 as this made calibration easier. 

 

Since the conductivity sensor was uncalibrated it was necessary to run two versions of 

surexec1: one that left the data as it was and another that included a calibration 

determined after the second crate of 24 surface salinity samples had been analysed. 
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Calibration 

Due to the temperature dependence of salinity, calibration of the TSG data against the 

bottle samples was done by comparing conductivity to the ‘bottle conductivity’. This 

quantity is derived from the 1983 equation of state using the temperature of the TSG 

housing and the measured bottle salinity. 

 

Firstly the conductivities were compared for the sensor that was replaced. Figure 12.1 

shows the calibration curve for this sensor, along with the residuals. It was felt that in 

this case a linear fit, i.e. a slope adjustment and constant offset, were sufficient to fit 

the range of conductivities encountered. 

 

 

Figure 12.1: Calibration Curve and Residuals for Instrument 1358 

 

Comparing conductivities for the data produced by the second sensor yields the 

calibration curve as shown in Figure 12.2. Although a fit was executed every time a 

crate of 24 samples was analysed, the fit obtained after the second crate was used. In 

the interests of calibrating the instrument for the future this seemed to fit the lower 

salinity water slightly better and it may be that over a wider range of salinities a 

parabolic fit would be better. For the purpose of this cruise we felt that applying the 

linear fit along with a slowly varying offset was fine as shown in Figure 12.2, along 

with the calibrated sea surface salinity and sea surface temperature time series. 
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Figure 12.2: Calibration curve and residuals for instrument 1341. The residuals are 

shown in salinity space, with a line showing the slowly varying offset that was then 

applied. The plots blow this show the calibrated sea surface salinity (SSS) and sea 

surface temperature (SST) 

 

Claire Powell 
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13. Bathymetry 

 

Bathymetry data was collected from a simrad ea500 echo sounder and stored directly 

onto a paper printout. The signal was also digitized and stored on the Darwin 171 

archive. 

 

This data was processed and calibrated by Jeff Bicknell (Section 14). Although the 

paper record is very clear when examined by eye, the digitization process can 

sometimes misinterpret the data it receives. For this reason the calibrated data was 

plotted in four-hour sections using matlab from where it could be compared to the 

paper record. Any differences occurred when the ship was on station, due to the CTD 

interfering with the echo sounder. Since in principal the ship does not move when on 

station it was possible simply to eliminate these bad points from the digital record. 

 

The completed set was then averaged into 5 and 2 minute bins using the matlab 

binavg routine. Navigation data, acquired when processing the TSG data (see Section 

12), was then added to the averaged bathymetry data using the pstar routine pmerge. 

 

Claire Powell 
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14. Computing 

Data Logging 

Data was collected via the ABC data logging computer system. The following data 

streams were collected during CD171 

 

Data Grabber   Instrument 

GPS_4000   Trimble GPS 4000  MkII Level A 

GPS_ASH   Ashtec ADU   MkII Level A 

GPS_NMEA                           Trimble GPS 4000                  MkII Level A 

GPS_G12   SeaStar G12 (DGPS)  MkII Level A 

SURFMET   On board surfmet system Direct to Level B 

ADCP    150Khz ADCP  Direct to Level C 

WINCH   CLAM system   Direct to Level B 

LOG_CHF   Chernikeeff Log  MkII Level A 

GYRONMEA   Ships Gyro   MkII Level A 

EA500D1                                Ships Echo sounder                MkII Level A 

 

Level A 

There was no real problems with the fitted Level As but when they were reset after a 

clock jump the gps_ash needed to have its input/output data path set to 4800 baud to 

ensure it continued to work the dates and times of these incidents were :- 

Day  122 22:12:56 to 23:01:55 

Day  129 17:31:12 to 18:43:42 

Day  151 00:25:32 to 00:54:29 

 

Level B 

The Level B had no problems during the cruise and logged continuously the backup 

tapes had a problem when one of the tapes failed to be recognised after being 

formatted this was downloaded, erased and reformatted all worked well from then on. 
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ADCP 

The 150 KHz ADCP was logged directly to the Level C workstation. It was also 

logged internally on the pc to enable records to be given for analysis by the scientists 

as required, the computer locked up on three occasions no apparent fault was noted 

but a suspicion of over heating was thought to be the probable cause. The day and 

time of these incidents is as : 

Day 144 15:13:21 to 17:57:59 

Day 148 15:25:29 to 16:14:39 

Day 154 22:44:41 to Day 155 01:04:31 

 

Processed Data Fields 

The data files were processed during the cruise bestnav (using gps_4000, relmov ), 

prodep is the processed bathymetry file which is produced from rawdep and using the 

carter tables for the relevant area of work produces a corrected depth for each input 

from the rawdep file. rawdep is produced by taking the raw echo-sounder data 

removing all duplicate times and then removing all transient spikes from the data 

using a program called rvsedit this then produces the rawdep file. relmov is used to 

calculate the ships relative motion taking inputs from the ships log and gyro these are 

then fed to the bestnav file to give ships position along with the gps _4000 data file 

 

General Computing 

Several computers were attached to the ships network during the cruise using the 

DHCP service on board. There was a problem with the network appearing to be slow 

this was traced to a cron program running on Darwin3ng after stopping the cron 

program the network speeded up considerably. The wireless network gave full 

coverage to the main Lab, with a limited signal quality to the accommodation and 

worked reasonably well only needing to be reset twice during the cruise 

 

Email 

The email system worked well all through the cruise 

Jeff Bicknell 
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15. Lowered Acoustic Doppler Current Profiler (LADCP) 

The ship departed from Bermuda with two WH300 ADCPs. The uplooking 

instrument failed on the first cast, and took no further part in the cruise. The 

opportunity was taken of the mid-cruise call in the Azores to pick up a replacement 

instrument. Unfortunately, this instrument had a weak beam, and so it did not provide 

any additional measurement capability, although data were acquired from it for 

stations 110 and following. 

 

The remaining downlooking WH300 was used throughout the cruise, and performed 

as well as could be expected. Its performance was similar to that of the WH300 

instruments on CD139 in the subtropical Indian Ocean: Reasonable data were 

acquired in the upper ocean and main thermocline, with significant reduction in 

quality below about 2000 metres depth. Fortunately this instrument maintained 

performance during the cruise, so that the unavailability of a second uplooking 

instrument did not compromise the cruise. 

 

Configuration 

The number of bins was set to 16, and reduced to 10 from station 110 onwards, since 

it was apparent that the distant bins were not acquiring any useful data. The bin size 

and pulse length was 10 metres for stations 1 to 65. This was increased to 16 metres 

for stations 66 onwards, in the hope that the increased power input to the water and 

increased averaging in each bin would improve the instrument performance in the 

poor scattering regions. This was thought to have been moderately successful, and the 

configuration was kept for the remainder of the cruise. 

 

Data processing 

The UH and LDEO software suites were configured. The UH suite was used as the 

primary source for water column profiles. The LDEO suite was used as the most 

convenient way to extract bottom-tracked ADCP data and package height-off-bottom 

data. The data processing paths were unchanged from recent cruises, e.g. CD139. 

Brian King 
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16. Navigation and Vessel Mounted ADCP 

An RDI vessel mounted Acoustic Doppler Current Profiler (VM-ADCP) was 

operated on RRS Charles Darwin throughout cruise 171 (see also Section 11). Data 

were logged continuously and compared with navigation data to provide absolute 

water velocities, ships velocities and heading. 

 

16.1 Navigation 

Data from three navigational instruments installed on RRS Charles Darwin were 

processed. The data were obtained from the Trimble 4000 GPS receiver (position), 

Ashtech XII 3DF GPS receiver (heading and attitude), and the Arma Brown MK10 

Gyrocompass (heading). All instruments were logged to the RVS level A system 

before being transferred to the RVS level C system. The scripts used to process the 

navigation data are described in the section titled ‘VM-ADCP and Navigation 

Processing Scripts’. The data were processed in 24 hours periods and corresponding 

files stored under the label of year day (jday). 

 

The Trimble GPS receiver provided a continuous data stream throughout the duration 

of the cruise. There were no issues with data quality or gaps. 

 

Heading 

Heading is calculated from both the ships gyrocompass and the Ashtech GPS data. 

The most continuous information on ship’s heading is available from the 

gyrocompass. It is used in both ADCP and meteorological data processing. The 

Ashtech data is used to correct the inherent error in the gyrocompass, oscillations 

which can continue for several minutes after a manoeuvre.  The heading (and attitude) 

data can then be combined with the ADCP data stream to calculate absolute ship and 

water velocities. 

 

The Ashtech GPS coverage was generally good throughout the cruise. Gaps in the 

data stream longer than one minute are listed in Table 16.1. 
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Time Gaps: 

(yr,day, hh:mm:ss) 

05 122 22:12:56   to   05 122 23:01:55 

05 124 10:25:05   to   05 124 10:27:06 

05 129 17:31:12   to   05 129 18:43:42 

05 135 17:09:01   to   05 135 17:10:41 

05 137 13:57:36   to   05 137 13:59:29 

05 151 00:25:32   to   05 151 00:54:29 

(48.98 minutes) 

(2 minutes) 

(1.2 hours) 

(100 seconds) 

(113 seconds) 

(28.95 minutes) 

Table 16.1: Gaps in the Ashtech GPS data logging stream. All times are in GMT. 

 

16.2 VM-ADCP 

The VM-ADCP is mounted in a recess within the ships hull. It is offset from the 

ships’ fore/aft direction by 45°. This offset is corrected for during initial data 

processing stages (adpexec0). The 150kHz ADCP, RDI transducer serial number 302, 

was logged using IBM Data Acquisition Software (DAS) version 2.48, profiler 

software (firmware) version 17.10. 

 

Data from the VM-ADCP was initially set to record in 64 x 8m bins, in ensembles of 

two minutes duration.  On day 150 this was altered to 40 x 8m bins due to poor signal 

return. This alteration increased the data return from less than 60 pings per bin, over a 

two minute averaging interval, to greater than 80. No other parameters were altered 

besides changes between water and bottom track modes. The ‘blank beyond transmit’ 

was set to 8m, and the transducer depth (hull depth) to 5m. With a pulse length of 8m, 

this gives the centre of the first bin as 21m. These settings are documented in the 

water track and bottom track configuration files: cd171wat.cnf and cd171bot.cnf. 

 

The ADCP data were logged continuously by the level C RVS computer. The data 

acquisition software was run on an IBM-type 300 MHz PC. From there, they were 

transferred in daily sections to pstar format and processed using the pstar scripts as 

described below. Logging was without major event although on several occasions 

data logging either crashed or was stopped. Gaps in the ADCP data stream longer 

than 5 minutes are listed in Table 16.2. Following identification of a problem with the 

number three transducer head a parallel RVS data-stream was started, collecting data 

relating to spectral width, raw amplitude and statistics for each beam. 



101 

 

The system was set to record in water track mode for the majority of the cruise. The 

exception is for a period of 2.2 hours when bottom track data were recorded whilst on 

the Western basin shelf (depth < 500m). 

 

Time Gaps: 

(yr,day, hh:mm:ss) 

05 120 17:10:51   to   05 120 17:45:27 

05 144 15:13:21   to   05 144 17:57:59 

05 148 15:27:59   to   05 148 16:14:39 

05 150 09:11:27   to   05 150 09:32:35 

05 150 09:32:35   to   05 150 09:46:42 

05 152 20:16:29   to   05 152 21:04:05 

05 154 22:44:41   to   05 155 01:04:31 

05 157 19:30:31   to   05 157 20:03:30 

05 159 10:35:29   to   05 159 10:52:59 

05 160 05:10:59   to   05 160 05:22:32 

(34.5 minutes) 

(2.75 hours) 

(40.7 minutes) 

(21.1 minutes) 

(14.1 minutes) 

(47.5 minutes) 

(2.3 hours) 

(33 minutes) 

(17.5 minutes) 

(11.5 minutes) 

Table 16.2: Gaps in the VM-ADCP data stream. All times are in GMT. 

 

Computer Crashes and Other Gaps 

On a number of occasions the logging PC completely froze. Communications were 

restored only after rebooting the computer. It was hypothesised that this was due to 

overheating of the logging unit. This idea was refuted after the door to the cupboard 

was tied open and the computer continued to crash. We are no wiser as to why the 

computer crashing occurs. If this problem is experienced on future cruises the 

viability of the logging PC should be investigated. Gaps in the data stream were 

minimised onwards of day 159 due to a warning program written by Brian King. 

When gaps in the ADCP data stream exceed 240 seconds, as indicated by comparison 

of the data stream time-stamps from the ADCP and GPS_4000 data streams, a large 

message was posted to all computers connected to the main scientific unix hub- 

SOHYDRO6. This alerted attention and a rapid response ensued on each occasion. It 

is highly recommended that use of this program be continued on future cruises. 
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Depth of Penetration and Resulting Change in Bin Numbers 

On day 150, it was noticed that the number of data exceeding the percentage good 

return threshold was virtually zero. This was causing large gaps in the data stream. It 

was suggested that the low return was due to a lack of scatterers in the water column. 

Inspection of data to that date showed that, excluding days 125-128, there was 

effectively zero return below bin 30. The solution to was to decrease the number of 

bins from 64 to 40. This increased the number of ‘pings’ to each bin, from less than 

60 to more than 80, hence increasing the likelihood of a sufficiently good signal 

return. For inspection purposes, the display threshold was reduced to one percent. 

Consideration of the variation in scatter within calculated velocities versus percent 

good return suggested it would be unhelpful to reduce the ‘percent good’ quality 

threshold for data processing (in adpexec3, see processing scripts) without very 

careful consideration of the relative merits of increased data coverage versus a greater 

standard deviation in velocity measurements. 

 

For the period where depth of penetration was greater than bin 40, days 125-128 

corresponding to our time in the Gulf Stream region, the 64 row files were retained. It 

was reassuring to note that in one of the most complex dynamical regions sampled in 

the 36N section we have adequate underway data for resolving the ageostrophic 

velocity field. 

 

On day 159, it was decided that it was not solely a lack of scatterers causing poor 

signal return. On-station data were good but between station profiles frequently 

contained no data above the percent good threshold. The ADCP vent pipe was bled on 

the afternoon of day 159 by Jeff Bicknell and a small amount of air released. The 

problem was further investigated by Bob Keogh on the morning of day 160. On this 

occasion a large amount of air was released and the ship’s engineers given a brief 

tutorial on the workings of the bleed valves.  It should be noted that bleeding was 

carried out as close to a last resort. The pipes should actually be bled at least once a 

week, preferably daily in rough weather.  It was noticed that at some point in time the 

ADCP vent pipe had received some damaged. This was fixed by Bob Keogh who 

noted on removing the pipe that it was fully blocked by corrosion. The vent pipe is 
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now working as designed and regular venting should be carried out. The mechanical 

section of this report contains further information on this matter. 

 

Unfortunately bleeding of vent pipes did not significantly improve data return during 

steaming periods. On day 161 electronic faults were pursued. The DAS self diagnosis 

tests were run and no faults were shown. Further investigation of the raw Doppler 

data showed that beam three was faulty. The nature of this fault is not known and 

further investigation is required once the ship is in port. In response to the faulty 

transducer head a three beam solution was adopted. Although this does not allow for 

calculation of error in velocity measurements it meant that consistent data were now 

available during steaming periods.  Velocity profiles were consistent both within and 

between ensembles, above a depth of approximately 125m (bin 15). 

 

Changes to the configuration file allowing a three beam solution were saved to the 

water track configuration file: cd171wat.cnf 

 
Changes to the data recording to output raw Doppler data including spectral width, 

beam statistics and number of three beam solutions were saved in: c171rec.cnf 

 

Issues with Data Quality 

Having identified that beam three was faulty the ADCP data throughout the cruise 

were investigated. The ‘pingdata***’ files corresponding to each data ensemble were 

automatically logged to the PC hard drive but were not being grabbed by the RVS 

data stream. These files were still available and could be downloaded to floppy disk, 

at the end of the cruise all available ‘pingdata’ files were copied to Zip disk for 

further post-cruise investigation. It is apparent that beam 3 was faulty throughout the 

cruise. For days 120-129 when the ship was in relatively shallow shelf waters the data 

quality was not significantly affected. Onwards from day 130 the data becomes 

increasingly poor, this is most apparent during steaming periods when the ships speed 

is upwards of 10 knots. Beam one is also not functioning at full capability. This is a 

possible explanation for very high velocity shear in surface bins. The on-board 

processed data (i.e. the archived data set) should be treated with caution. Further 
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processing and investigation to be carried out post-cruise will provide further insight 

as to the level of confidence that can be had in the data. 

 

The following report was left for any following parties sailing on Charles Darwin 

hoping to make use of the VM-ADCP data: 

 

Notes on shipboard ADCP beam weakness 

It was noted that ADCP data return had deteriorated to the point of returning almost 

no data while steaming between stations. Initially there was the possibility that this 

was caused by poor scattering conditions. As this explanation became increasingly 

improbable, various hardware explanations were explored. The sea chest was bled of 

air several times. Although some air was vented, and problems (blockages) with the 

air bleed system were identified and rectified, the data stream was not restored. 

 

The DAS was reconfigured to permit 3-beam solutions, and the data return improved 

immediately. Various raw outputs were activated and grabbed into RVS file 

'adcpraw', starting at approximately day 161, 1500 GMT. 

 

Data were analysed for the period 161/1630 to 162/0215, which included an even split 

of station and steaming time, roughly 5 hours of each. 

 

Analysis and interpretation of the raw data are as follows. 

 

Individual beam amplitudes (rawampl): This parameter contains data for the last 

ping in each ensemble. All the station ensembles have been averaged to a single 

profile (approx 140 ensembles) and all the steaming data have likewise been averaged 

(also approx 140 ensembles). Beam 3 is consistently weak compared with the others. 

This beam was evidently to blame for the loss of data. Beam 1 is also weaker than 

beams 2 or 4, but apparently not fatally so. The Beam 3 signal strength is marginally 

better on station than while steaming at 10 knots. Evidently the station data are just 

above the threshold for returning 'good' pings, but 4-beam solutions in the days 

preceding 161 should be used with caution pending further investigation of 
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consistency with other estimates of currents. It is possible that biases will have crept 

in, even though the DAS determined the pings to be 'good'. 

 

Percent good pings (rawgood): For each beam rawgood takes a single value for each 

2-minute ensemble. As far as we can tell from the manual, this is the total percent 

good bins for all bins and all pings on a beam. It doesn't return statistics for each 

bindepth. Even though beam 1 is weaker than beams 2 and 4, it returns comparable 

percent good statistics. Beam 3 is clearly well below par. Beam 3 returns a reasonable 

number of good bins on station, so that DAS returns 4-beam profiles on station, and 

almost no good bins while steaming. 

 

Raw spectral width (rawspecw): As with rawampl, this parameter also contains the 

raw data from the last ping in each ensemble. Although we don't know exactly how to 

interpret this parameter, we infer that this parameter is present if a bin doppler 

estimate was returned, and takes an absent value (-1) if not. Therefore the percentage 

of valid returns of this parameter is an approximate measure of the percent of good 

pings in each bin for each beam. On station, Beam 3 is valid for 50% of the time in 

bins down to 150 metres, while beams 1, 2 and 4 approach 100% in the same depth 

range.  For steaming data, the data return from beam 3 drops below 20% at all depths, 

while the other beams decay with depth as expected, dropping to 25% at about 200 

metres. The actual values of the spectral width do not show a dramatic contrast 

between beams. On station, Beam 3 is not distinguishable from the others. While 

steaming, the spectral width (when returned as valid) is clearly higher than for the 

other beams, indicative of a poorer signal-to-noise ratio. 

 

Note concerning data logging: We note in passing that it is possible in DAS to save 

percent 3-beam solutions as one of the 40-bin ensemble parameters. This was 

activated at the same time as 3-beam solutions were allowed. However, we note that 

this is not a parameter available to be grabbed into the RVS adcp file. Therefore we 

believe this parameter will be saved in the pingdata files from day 161 onwards, and 

could be parsed from them after the cruise if there is sufficient interest. We can be 

sure that steaming data will be almost 100% 3-Beam solutions. Station data will be a 

mixture of 3- and 4-beam solutions. 
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Principal conclusions as at 12 June 2005 

1) The shipboard ADCP is not functioning in 4-beam mode. Data from CD171 prior 

to the activation of 3-beam solutions on day 161 should be reviewed post cruise. 

Some periods early in the cruise are clearly good, later periods may be suspect. 

2) The instrument needs to be investigated as soon as possible. It is possible that one 

or more beams have become obstructed, or there may be a more serious hardware 

fault. Beam 3 is definitely returning bad data. Beam 1 is performing less well than 2 

and 4, but above the threshold for absent data. 

3) The instrument should be operated with 3-beam solutions activated in DAS until 

the beam issue is resolved. We recommend the continued use of adcpraw as a 

diagnostic tool until the problems are resolved. We believe good data down to about 

200 metres can be collected in this mode. 

 

16.3 ADCP Calibration 

Bottom Track Data 

The misalignment angle, φcorr between the fore/aft directions of the vessel mounted 

ADCP and the ship, φcorr, is given by: 

! 
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and φship is the direction of motion of the ship, calculated from the north- and 

eastwards components of the ship’s velocity, V=(vn, ve), φADCP is the observed 

direction of motion of the seabed, Vbot=(vn, ve). 

 

The speed correction is calculated from the ratio of the, known, vessel speed and the 

measured ADCP speed. 

! 

A =
V

V
bot

 

From Bottom Track Data: φ = 3.5°; A=1.0002 

Post-calibration the remaining residuals are: φ = 0.1007° ±0.3293, A=1.0000± 0.0056 
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Figure 16.1: Angle of correction between ship’s fore/aft direction and that of the 

VMADCP for days (a) 120-130 (b) 130-140 (c) 140-150 (d) 150-160. 

 

Water Track Data 

In addition to the standard calibration using any available bottom track data a 

comparison calibration was done using water track data. This was restricted to 

steaming periods where absolute water velocity will be small in comparison to the 

ships velocity. The angle of motion of the water is assumed random when considered 

over the period of the calibration. 
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Figure 16.2: Speed correction factor for VMADCP speeds to true speed for days (a) 

120-130 (b) 130-140 (c) 140-150 (d) 150-160. 

 

The data were considered both for the entire cruise duration and in sections of 10 

days. Smaller time periods were considered but the error on calibration coefficients 

increased greatly with reducing numbers of data points. Figures 16.1 and 16.2 show 

the φ and A corrections calculated for each bin. When restricting attention to the first 

10 day period, while the ship was in relatively shallow western shelf water, the 

coefficients compare favourably with those for the bottom track data. A deterioration 
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in the comparison is seen in later periods. Whether this is accurate or a result of poor 

data quality will be further investigated post-cruise. 

 

16.4 PHINS. 

The PHINS fibre optic gyro system was available for trial use. In addition to the usual 

processing using heading information from the Ashtech GPS system a parallel 

directory was created and processing steps ashexec 2-4 (described below) were 

redone using PHINS headings. It is immediately obvious that the PHINS provided a 

higher resolution (every second as opposed to a 2 minute average), more complete 

and less noisy heading data set. Calibration was also carried out for the PHINS data 

and yielded values of: φ = 3.0°, A= 1.0002 

Post-calibration the residuals were: φ = -0.654°±0.333, A=1.0000±0.0056 

 

16.5 On and Off Station Positions 

The appended 'adpapp.abs' file was split into on and off station sections. The state of 

the ship was determined from the speed of the ship as determined from the ship 

velocities in the 'botapp.abs' file. A single averaged file was produced for each station 

and a 10 minute average for between station/steaming sections. 

 

16.6 Chernikeeff E-M log calibration 

Once a calibration for the shipboard ADCP had been established, data from the E-M 

log were compared with a near-surface bin (bin 3) of the ADCP. The E-M log was 

found to be displaying values that were high relative to the ADCP, with a positive 

offset at low speed. 

 

The E-M log had been configured with data from a calibration carried out on CD160. 

Using the engine revs/E-M log speed from one leg of the CD160 calibration, a new 

calibration table was prepared, and entered into the E-M log unit in the plot at approx 

1300 on 3 May (day 123). Instructions for this procedure are in Section 6 of the 

Chernikeeff operating manual. 
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The requirement is for a calibration table that maps E-M log transducer speed ‘a’ into 

true speed through the water ‘s’. 

 

The calibration table was prepared as follows: First a correction was calculated that 

would bring E-M log speeds into agreement with the shipboard ADCP. If the speed in 

the RVS data file (which employed the CD160 calibration table up to day 123) is L, 

the best fit was S = 0.976 * L – 0.75 

 

This gives the required conversion from the CD160 calibration to a CD171 

calibration. The offset is consistent with the observation that the E-M log displayed 

0.9 knots while alongside in Bermuda. 

 

Next, a single straight line fit was obtained between transducer speed and true speed 

for the CD160 calibration. We preferred to use a straight line approximation so that 

imperfections or nonlinearities in the CD160 calibration table were not propagated 

into the next calibration. Thus s1 ~= 0.786 * a – 8 

 

Thus the required entries in the calibration table are given by 

s2 = 0.976 * ( 0.786 * a – 8 ) – 0.75 

These values are listed in the table 16.3. 

Revs Transducer 

speed ‘a’ 

CD160 true 

speed ‘s1’ 

CD171 true 

Speed ‘s2’ 

25 180 131 55 

50 533 383 326 

75 836 686 558 

100 1144 909 794 

125 1452 1109 1031 

Table 16.3 Required Calibration Values 

 

On 12 May (day 132) the calibration was reviewed, with an analysis of all E-M log 

and ADCP data up to 132/0500. The agreement at high and low speeds was found to 

be good, with no systematic residuals. However, as the cruise progressed, it became 

apparent that the E-M log was displaying speeds lower than the true speed. 
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The calibration was again reviewed on 6 June (day 157). No systematic bias was 

discerned at low speeds, but there was a clear bias at higher speeds. Examination of 

the ratio of true (ADCP ship-over-water) speed to RVS-logged E-M log speed shows 

a drift begins at about day 135. At 6 June (157), the correction factor is 1.12 (median 

of all data over 8 knots from 155/0000 to 157/0955. 

 

Accordingly a new calibration table was prepared, by scaling s3 = s2*1.12 

The resulting values (shown in table 16.4) were entered into the deck unit at 158/0905 

by Jeff Bicknell. 

 

Revs Transducer 

speed ‘a’ 

CD171 true 

speed ‘s3’ 

25 180 62 

50 533 365 

75 836 625 

100 1144 889 

125 1452 1155 

Table 16.4 Scaled Calibration Values 

 

An assessment was made of the new calibration in the days following its application. 

On days 158 and 159, at speeds of about 8 knots the E-M log seemed to be displaying 

lower speeds than the ADCP. On days 160 and 161, at speeds of 10 knots, the E-M 

log agreed with the ADCP. On Day 161 it was noticed that beam 3 on the VMADCP 

was bad, and had been bad for a considerable time. The VMADCP was switched to 3-

beam solutions at 161/1430. VMADCP data collected after this time will need to be 

reviewed post-cruise for possible post-cruise recalibration. Therefore the E-M log 

calibration in force at the end of cruise 171 should be considered uncertain at the 3 to 

5 percent level. The E-M log data acquired during the cruise should not be used for 

scientific purposes, due to the time-varying drift of calibration. 
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16.7 VMADCP and Navigation Processing Scripts 

Navigation and Vessel-Mounted ADCP (VMADCP) were processed in daily 

segments. Appended copies of the processed files were created. The processing 

scripts used are listed below. All execs are preceded by the ‘171’ cruise identifier. 

The processing scripts are grouped under the single executables dailynav1 and 

dailynav2 dealing with the navigation and VMADCP processing steps respectively. 

 

All scripts and file names are preceded by the cruise identifier: 171 

dailynav1: 

gpsexec0: read in navigation best from the RVS data stream “gps_nmea” to pstar 

format, calculate the ships velocity and then append onto the master 

cruise file. 

Output: gps{jday}.raw, gps{jday}, gps01 (master). 

gyroexec0: read in heading data from the RVS gyro data stream to pstar format, 

perform a nominal check on data control: unique times, monotonically 

increasing, headings between 0-360°. Append to master cruise file. 

Output: gyr{jday}.raw, gyr01 (master). 

ashexec0: read in data from the RVS data stream for the Ashtech XII 3DF GPS 

receiver. Perform preliminary quality control checks. 

Output: ash{jday}.raw. 

ashexec1: merge the ashtech data (from ashexec0) with the heading data (from 

gyroexec0), calculate the difference in headings , ashtech-gyro (a-

ghdg). 

Output: ash{jday}.mrg 

ashexec2: edit the merged ashtech file using the following criteria: 

heading   0 < hdg <360° 

pitch    -5 < pitch < 5° 

roll    -7 < roll < 7° 

attitude flag   -0.5 < attf < 0.5 

measurement RMS error 0.00001< mrms < 0.01 

baseline RMS error  0.00001< brms < 0.1 

ashtech-gyro heading  -10 < a-ghdg < 10 ° 



113 

The data were then averaged to 2 minutes and further edited on pitch. The constraint 

of the pick was altered during the cruise. Days 119-150 were picked on 

pitch with 0.5° of the daily mean pitch. This was resulting in large 

gaps in the data stream (filled by linear interpolation in ashedit.exec). 

For days 141-145 the pick was increased to within 1.5° of the daily 

mean pitch. This improved the data coverage but resulted in a very 

noisy data stream requiring significant user input in the following 

datapick (ashedit.exec). As a compromise the pick was reduced to 

within 1° of the daily mean value. This improved the representation of 

the data and required minimal user input on the data pick. 

Output: ash{jday}.edit, ash{jday}.ave 

ashedit.exec: any remaining spikes  in a-ghdg were manually picked out (plxyed), 

the data were linearly interpolated between missing values to create a 

smooth data stream and appended to a master file for merging with 

ADCP data in adpexec2 (see later). 

Output: ash{jday}ave.dspk, ash01.int (master file). 

dailynav2: 

adpexec0: read in from the RVS level C “adcp” data stream into pstar. The data 

were split into gridded depth dependent data, placed into “adp” files, 

and “non-gridded” depth independent data were placed in to “bot” 

files. Velocities were scaled to cm s-1, the amplitude by 0.43 to db, and 

the time stamp moved to the centre of each bin. The depth of each bin 

was determined from user supplied data, delta, the offset of the bin 

centre. 

Delta = Hull depth + Blank after transmit + bin length =  5 + 8  + 8. 

On day 150 a change was made to the number of bins. Further explanation of this is 

made below. This routine required updating to account for the change 

from 64 bins to 40bins. 

Output: adp{jday}d, bot{jday}d 

adpexec1: data can be corrected for any drift in the logging PC clock with respect 

to the RVS data-stream timestamp. With the PC interfaced to GPS the 

Userexit program four (UE4) is able to correct the PC time using the 

GPS time. This eliminates the need for clock correction but the step is 
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retained, with a zero clock correction throughout, so that compatibility 

of the processing software with other ship’s platforms is maintained. 

Output: adp{jday}d.corr, bot{jday}d.corr, clock{jday} 

adpexec2: the adcp data were merged with the master ashtech navigation data: 

adp{jday}d.corr with ash01.int 

The east/north adcp velocities were converted to speed and direction, the heading 

error (a-ghdg) was added to the direction, and velocities converted 

back to  east/north. 

Output: adp{jday}d.true, bot{jday}d.true 

This processing step forward were carried out in a parallel directory (adp_p) using 

data from the IXSEA PHINS inertial navigation system. 

adpexec3: the data were calibrated for any offset between the adcp unit and the 

forward axis of the ship. The additional intended offset of 45° is dealt 

with during the preliminary processing. More details of the VM-ADCP 

are below. The applied values for the correction angle, φcorr, and speed 

factor, A, are: 

ASH: φcorr= 3.5°, A= 1.0002 

PHINS: φcorr = 3.0° , A= 1.0002 

The data were then edited on a threshold percent good of signal return, 25% by 

default, and velocities for returns below this threshold set to the absent 

data value. 

Output: adp{jday}d.cal, bot{jday}d.cal 

adpexec4: the data are merged with the “bestnav” navigation file, gps01.  The 

velocity of the ship is calculated and from this absolute water velocities are 

calculated. 

Output: adp{jday}d.abs, bot{jday}d.abs 

Paula McLeod 

Brian King 

Elaine McDonagh 
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17. Fibre Optic Gyros (FOG’s) 

The ships heading was measured using four separate instruments, the ship’s 

mechanical gyrocompass, the Ashtech GPS ADU, and two fibre-optic gyro 

compasses (FOG’s), the Octans and the Phins. 

 

17.1 Benchtop evaluation of PHINS and OCTANS FOG’s 

FOG’s 

Fibre-optic gyrocompasses use interferometry to determine the difference in phase of 

two light beams travelling in opposite directions around a fibre-optic coil in order to 

deduce the speed of rotation through inertial space at the location of the instrument. 

Thus if the latitude and speed of the vessel are also known the heading can be 

determined. Two fibre-optic gyrocompasses were employed on CD171. These were 

attached to the bench on the port side of the plot and orientated in line with the ships 

own axes. Later in the cruise, the Octans was relocated on the CTD frame, for 

investigation of the performance of ADCP magnetic compasses. There follows a brief 

report of the Octans and PHINS performance. A more comprehensive study was 

undertaken ashore post cruise, the results of which are published in an NOC research 

report (Prytherch and King, 2006). 

 

Octans FOG 

The Octans FOG is contained in a watertight housing capable of being lowered to the 

ocean floor on the CTD. It was used in initially in the plot but transferred to the CTD 

for stations 69 to 113. Whilst in the plot lever arm distances were entered in order to 

compensate for the difference in movement experienced on the bench to that 

experienced at the GPS antenna (x1 = 0.0m, x2 = -5.0m, x3 = 9.5m). Between the 29th 

April and 21st May GPS speed and heading information was supplied to the repeater 

through a serial port. However this led to significant wanderings in the heading 

lasting for an average of 20mins and occurring three or more times in any 24hour 

period. Following consultation with the manufacturer IXSEA this serial port feed was 

removed at 02:30 on 21st May. The problem was that the interface from the Octans to 

external GPS input was in some sense not robust. It transpired that this was a known 
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problem prior to the cruise. Once the GPS serial input has been disabled, the regular 

and substantial Octans heading errors were removed, but it was now necessary to 

enter speed and direction manually. Since this could not be maintained throughout the 

cruise, the data acquired during the cruise does not enable an effective evaluation of 

the performance potential of the Octans. 

 

In order to enable data acquisition from the Octans during the underwater test phase, a 

data logger (in a separate pressure case) had been prepared at NOC by Jon Cambell 

and Andy Harris. Octans data messages were stored in the logger in the form of 

NMEA messages ($HEHDT, $PTHRO). In addition to data logging, the pressure case 

performed the functions of power management and a communications breakout box. 

The logger provided a time stamp and was synchronised to GPS time by daily inputs 

of GPS data. Although most clock adjustments were small (less than 1s) some larger 

adjustments occurred after the logger had been rebooted. Octans output was set at a 

frequency of 2Hz and stored in hourly data files (of size approximately 1270KB). The 

logger had the capacity to store 340 hours of data after which it was necessary to clear 

its memory. Files from the logger were downloaded daily via a network cable. It was 

noted however that some of the downloaded data files had missing lines (e.g. time but 

no heading) or incorrectly formatted lines. This corruption occurred most frequently 

when files were being downloaded from the logger to the PC. 

 

PHINS 

The second FOG Phins operated in a similar manner to the Octans, but contained a 

larger fibre-optic coil and was suitable for shipboard work only. During the whole 

cruise GPS speed and latitude were supplied via serial port A to the machine, and 

time was also configured to be synchronised with the GPS. Whilst still in port and 

before a GPS input was added, the Phins latitude, speed and therefore heading drifted 

after setup. Once the GPS input was connected it was necessary to set the GPS 

configuration to 'Not Active, Always True' in order that the Phins' Kalman filter 

would not reject the GPS input. This was not changed after the start of the cruise. 

 

Data from the Phins were logged directly on to a PC via a USB cable. This data 

included time, heading, pitch and roll information and was output at a rate of 1Hz and 
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stored in hourly files. These files were tab delimited text files containing 

approximately 360KB each. PHINS data logging was controlled by manufacturer 

supplied software. 

 

Data Download and Processing 

Data from both the Octans and the Phins was downloaded to Unix on an 

approximately daily basis. The Octans data was first filtered using oct_pro1.exec to 

retain only time, heading, roll and pitch information and then read into Matlab using 

oct_pro2.m. It was necessary to build subroutines to check the format of each of these 

input lines and also reject incomplete sets of lines. The Phins data was read into 

Matlab using phins_pro.m. Although there were fewer problems with the Phins data 

files an error line appeared in the files almost every 24hours at 12:29:35 UTC. 

 

Adding or subtracting 360 to the heading removed jumps of 360 degrees every time 

the heading passed through 360 to 0 or 0 to 360 which removed errors when merging 

the data sets onto the common time base. The data sets were then linearly interpolated 

onto an integer second time series. Both these tasks were done in the program 

threesixty.m. Finally the differences of the two data sets were compared and the 

difference averaged on a two-minute time step in cfoctphins.m. 

 

The Phins and Octans data sets were then compared to the Ashtech and Gyro data sets 

which were also linearly interpolated onto the same time base. 

 

The preliminary analyses carried out during CD171 revealed the problems with the 

Octans, and also suggested that the PHINS was performing at least as well as the 

Ashtech GPS ADU that had previously been considered to be the best available 

source of shipboard heading. 

 

17.2 Underwater deployment of OCTANS 

Octans deployments on the CTD package 

After investigation of the performance of the Octans on the bench, the second phase 

of the Fibre-Optic Gyro experiment was deployment of the Octans on the CTD frame. 
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This was to enable evaluation of the heading-pitch-roll sensors of the WH300 ADCP, 

using the Octans as a reference. An evaluation was made of the sensors on WH300 

s/n 5414. 

 

The ADCP is fitted with a magnetic compass, so the reported headings are subject to 

instrument measurement errors (failure to measure the local magnetic field correctly) 

and what we refer to as frame-induced errors: distortion of the large-scale Earth’s 

magnetic field by the package so that the local magnetic field observed by the WH300 

has a bias compared with the geomagnetic model used to adjust the heading data in 

post-processing. The frame-induced error can be a combination of two types: 

magnetic field sources on the package, and distortion of the large-scale field by metal 

in the package. Both the instrument and the frame errors are expected to vary with 

heading of the package. 

 

Underwater configuration 

The Octans was deployed on the CTD package on station 69. The underwater rig 

consisted of the Octans, the logger/junction box, and a battery pack. The data logging 

arrangement was equivalent to the bench setup, except that power was supplied by a 

battery pack instead of the bench power supply. The Octans was mounted centrally in 

the frame, between the downlooking WH300 and the CTD, at the same level as the 

CTD. The forwards direction of the Octans was pointing towards the CTD. The 

forwards direction of the WH300 (beam 3) had also been aligned in this direction by 

eye before the start of the cruise. Initially therefore we expected the Octans and 

WH300 headings to agree, with a possible small mean offset. 

 

The junction/logger box was mounted below the Octans and at right angles to it. The 

junction box connectors were to the left of the Octans when looking in the Octans 

forward direction. The battery pack in use was a spare battery pack for the WH300 

LADCP system. It occupied a slot to the right of the Octans, above the CTD break-

out-box. It was therefore near the fin, and on the opposite side of the frame to the 

battery pack supplying power to the LADCPs. The trailing lead from the junction box 

to the battery pack had a connector incompatible with the 2-pin bulkhead connector 

fitted as standard to the battery pack. A compatible bulkhead connector for the battery 
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pack was brought with the Octans rig, and had been fitted to the battery pack after 

leaving Bermuda. The original bulkhead connector was refitted to the battery pack 

after the rig was taken off the frame, and the spare connector returned to NOC with 

the set of junction box blanks/connectors. 

 

There was a choice of two leads to connect the Octans to the junction box. These 10-

way leads have limited flexibility and had been made with different geometry. One 

was made up with the lead in-line with the connector, and the other had the lead at 

right angles. The right-angle lead was more convenient, because there was limited 

space between the Octans and the CTD. 

 

The battery pack was removed from the frame for stations 79 to 81. There was a 

problem with noisy CTD data on the fin sensors and all possibilities of disruption to 

the water flow were being considered. The Octans and junction box remained on the 

frame, with the power socket on the junction box blanked off. The CTD data problem 

was resolved elsewhere, and the battery pack refitted for station 82. 

 

Communication and power on deck were via a trailing lead from a laptop on the 

starboard-side bench. This was equivalent to the shorter lead used for bench tests, and 

provided power/battery charging, RS232 and ethernet comms to the logger, and 

RS232 configuration/comms for the Octans. The deck lead split into two 6-way tails, 

one of each gender. A trailing lead from the junction box also split into two 

corresponding tails, which were brought to the edge of the frame adjacent to the 

ADCP tails. The deck lead was connected after each station to recharge the battery. 

Data were downloaded once per day, on the 00-08 watch. Energy consumption 

(nominally 12W at 24V) was comfortably within the battery pack capacity. 

 

Problems encountered 

Good data were obtained up to station 113. After that, communication with the Octans 

was lost. Logger files were empty, and communication on deck using the Octans 

Repeater software on the laptop produced no data. The logger was rebooted several 

times, and seemed to be working correctly. Power cycling (disconnect and reconnect 

the battery pack) failed to cure the problem. Since there was no blank for the 
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bulkhead connector on the Octans, and no means of powering it or communicating 

other than via the junction box, it wasn’t considered possible to investigate the 

problem with the instruments on the frame. The entire rig was removed after station 

115 and investigated on the bench. It was immediately found that the system worked 

perfectly when using the alternate blue lead from junction box to Octans. The 

problem in the lead with the right-angle connector was that the power ground pin no 

longer provided a connection. The other 9 pins seemed to be OK. We were unable to 

establish in which part of the cable the problem lay. 

 

We note that the cable fault occurred soon after a series of deep stations over 5000 db 

(5163, 5537, 5589, 5629, 4835 decibars for stations 109 to 113). The Octans had been 

added to the frame after completion of deep stations in the western basin, so these 

were the first stations over 5000 metres after crossing the Mid Atlantic Ridge. We 

also note that some difficulty had been experienced in arranging for the Octans leads 

to be made up. When used on ISIS, oil-filled pressure-balanced leads are used to 

connect to the DG O’Brien connector on the Octans. The risk of seepage of oil into 

the CTD or onto the Niskin bottles meant that an alternative had been sought. Our 

initial conclusion, pending investigation of the failed lead, is that the mouldings used 

would not be sufficiently reliable for regular deep use. Therefore if an Octans was to 

be routinely integrated into a CTD frame, an alternate solution is required. This may 

require the manufacturer to provide a different bulkhead connector on the Octans. 

There were no evident problems with the 10- and 12-way connectors on the junction 

box. 

 

Data and analysis of WH compass errors 

Data were logged continuously on the underwater logger. In addition, several 

segments of data were logged to the laptop while the package was on deck using the 

Octans Repeater software, so that they could be supplied in manufacturer’s format if 

required. 

 

The report from CD139 gives an analysis of how to separate frame error from 

instrument measurement error. On any station, the difference is found between 

reference heading (in this case the Octans) and the ADCP heading. Over a collection 
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of stations, typically 6 to 10, the random rotation of the package is sufficient to ensure 

that all parts of the azimuth are explored, so that a complete description is available of 

heading difference as a function of heading. Once this heading difference has been 

established, the ADCP is rotated in the frame a new heading difference is established. 

Assuming the frame error does not change as a result of rotating the ADCP, the 

‘difference of differences’ results entirely from the instrument error. A set of 

equations describing the calculation of instrument error from successive rotations of 

the ADCP was given in the CD139 report (Bryden et al. 2003). Unfortunately the 

equations are garbled in the published version, so the theory is reproduced below. 

 

Theory for derivation of WH compass errors from CD139 

The following is a reproduction of the theory for estimating WH LADCP magnetic 

compass errors, as set out in the CD139 cruise report. The published hardcopy of the 

text from that report had a number of places where equations were garbled, mainly 

missing minus signs. 

 

The text assumes two WH instruments, each with a magnetic compass. On CD171 

there was one WH instrument, and an Octans Fibre-Optic Gyrocompass. The FOG 

takes the place of the ‘uplooker’ WH instrument. 

 

We reproduce here the text as it should have appeared on pages 89ff. of the CD139 

report (Bryden et al. 2003). 

 

Dual Workhorse related compass errors 

An investigation was carried out into the magnetic compass errors of the WHs. The 

motivation is that the heading related and relative compass errors of the two 

instruments play a large part in resulting velocity profile errors. 

 

From the analysis that follows, we expected to be able to determine the instruments’ 

compass errors. Unfortunately, the results are puzzling, as will be described. The 

experiment consisted of comparing differences of reported heading between two 

instruments, with the instruments being rotated in their clamps between casts. 
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The instrument headings returned by the compasses are subject to errors from two 

sources. First, distortion of the local magnetic field by the CTD frame and possibly by 

the instrument itself, and second, instrumental error whereby it fails to measure the 

local field perfectly. Let the local field error, presumed to be caused chiefly by the 

influence of the frame, be denoted by F. Let the instrument error be I and the 

measured heading be H. Then at some instant, the true heading T of the underwater 

package (e.g. the direction in which the fin was pointing) is given by 

T = H + O + F + I (17.1) 

where O is the offset between beam 3 of the instrument and the nominal true package 

heading. The sense of F and I is that they are corrections that must be applied. All 

elements of (17.1) are dependent on time t, except for O. We assume that F is a 

function of T. That is to say, whenever the package points in the same direction, F has 

the same value. We also assume that I is a function of H: whenever the instrument 

measures a heading of say 90°, it will be subject to a reproducible error. Thus in full 

T(t) = H(t) + O + F(H(t)) + I(H(t)) (17.2) 

Now (17.2) applies for both uplooker (subscript 1) and downlooker (subscript 2) 

instruments, 

T = H1 + O1 + F1(T) + I1(H1) 

T = H2 + O2 + F2(T) + I2(H2) 

Taking the difference of the two equations, and noting that the true package heading 

is the same for both instruments, gives 

H1 – H2 = O2 – O1 + F2 – F1 + I2 – I1 (17.3) 

 

Suppose that H1 – H2 has been measured for a complete range of headings, with 

instrument positions we will denote by subscript A. (Note on many casts, the package 

completes one or more complete rotations, but on some casts this was not the case.) 

Thus, H1 – H2 is considered to be known as a function of T. Now suppose that one of 

the instruments is rotated on the frame, and the new geometry is denoted by B. To 

preserve generality, we will suppose that each instrument is rotated by an amount δ 

counterclockwise viewed from above. Of course, for any adjustment we chose to keep 

either δ1 or δ2 as zero, rotating just one instrument. Thus, on cast A 

T = H1 + O1A + F1(T) + I1(H1), 

and on cast B 

T = H1 + O1B + F1(T) + I1(H1), 
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where O1B = O1A + δ1 and similarly O2B = O2A + δ2. 

 

Consider (17.3) for two casts before and after a rotation. At some true package 

heading (estimated from the uplooker, for instance, by assuming that F and I are 

small), 

H1A – H2A = O2A – O1A + F2A(T) – F1A(T) + I2A(H2A) – I1A(H1A) 

H1B – H2B = O2B – O1B + F2B(T) – F1B(T) + I2B(H2B) – I1B(H1B) 

Subtract these two equations to discover the change in H1 – H2. Assuming that the 

error terms are small, we can write, for example H ~ T – O, so I(H) ~ I(T – O), 

(H1B – H2B) – (H1A – H2A) = 

+{(O2B – O2A) – (O1B – O1A)} 

+{(F2B(T) – F2A(T)) – (F1B(T) – F1A(T))} 

+{I2B(T – O2B) – I2A(T – O2A)} 

–{I1B(T – O1B) – I1A(T – O1A)}. 

 

Now assume F1B(T) = F1A(T) and F2B(T) = F2A(T), i.e. the frame induced error is 

assumed to be unchanged by rotation of the instrument in the frame, then 

(H1B – H2B) – (H1A – H2A) = 

{δ2 – δ1} + zero 

+{I2B(T – O2A – δ2) – I2A(T – O2A)} 

–{I1B(T – O1A – δ1) – I1A(T – O1A)}. 

 

Now, we also assume that the functional form of I(H) has not changed, so I1 and I2 do 

not need subscript A or B. Finally if, for example, δ1 is zero, then the last line of the 

above equation is zero, so 

(H1B – H2B) – (H1A – H2A) = δ2 + {I2(T – O2A – δ2) – I2(T – O2A)} (17.4) 

Thus the double difference (change in heading differences) resulting from the rotation 

of an instrument in the frame has a mean offset equal to the rotation of the instrument, 

and a functional form (as a function of T) that arises from a phase shift of I2. 

 

Next, we observe that the left hand side (LHS) of (17.4), is found to be roughly 

sinusoidal in shape, with amplitudes up to 5 degrees either side of the mean. If 

I = sin(H), then LHS should be described by a sine curve, however this did not fit the 

results satisfactorily. Therefore assume, 
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I(H) = A1sin(H + φ1) + A2 sin(2H + φ2). 

 

In principle, the four coefficients A1, A2, φ1, φ2 can be determined from a single 

rotation of amount δ2. Indeed, it was found that this functional form fitted the 

measurements very well. The residuals of LHS after fitting were invariably less than 

1°. Now 

sin(H – δ) – sin(H) = 2 cos(H – δ/2)sin(– δ/2) 

and (17.4) becomes 

LHS – δ2 =  (17.5) 

2A1cos(T – O2A + φ1 – δ2/2) sin(–δ2/2) 

+ 2A2cos(2(T – O2A) + φ2 – δ2) sin(–δ2). 

 

The unknown coefficients and phases were determined from the lowest two modes of 

an FFT of (LHS – δ2) in Matlab. Note that if δ2 is exactly 180°, the cos(2H) term 

cannot be determined. 

 

A series of adjustments to the WH positions was made, as summarised in table L1 on 

page 92 of the CD139 cruise report, to attempt to solve for the unknown amplitudes 

and phases of the instrument error. 

 

If all our assumptions were correct, any move of the MWH should enable us to 

determine the same A and φ coefficients for I2. However, we don’t find this to be the 

case. Instead different coefficients are found for different orientations (A to J) of the 

two instruments. One or more of the assumptions must be wrong. 

 

The paragraph above ends the extract from the CD139 report. 

 

Results from CD171 

The previous section of text describes the conclusions from CD139. The estimates 

made of the coefficients A1, A2, φ1, φ2 were not consistent between the various 

rotations of the WH ADCPs. This inconsistency remained unexplained. 

 

A much more satisfactory set of data was obtained on CD171. 
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Compared with CD139, where a WH300 ADCP was used as a reference while the 

second one was rotated, the situation is simplified. The Octans is regarded as giving 

true heading of the package, measured with an absolute accuracy significantly better 

than the ADCP compass errors being investigated. 

 

The ADCP s/n 5414 was set in four orientations, with stations grouped as follows: 

Total adjustment 

compared with 

config A 

Config-

uration 

Station 

range 

Number 

of stations 

in this 

config-

uration 

H1-H2 O1 O2 

Octans WH 

Nominal 

alteration 

A 69 - 78 10 358 0 358 0 0 0 

B 82 - 90 9 274 0 274 0 276 M CW 90 

C 91 - 99 9 180 0 180 0 182 M CW 90 

D 100 - 

113 

14 84 0 84 0 86 M CW 90 

Table 17.1: Instrument subscript 1 is the Octans, which defines the package heading. 

M in the final column refers to the Master WH. Headings and differences have been 

reduced to lie in the range (0,360). 

 

Using the model I = A1*sin(θ + φ1) + A2*sin(2* θ + φ2) the amplitudes and phases 

can be determined from 90 degree offsets of the instrument. The A2 term cannot be 

determined from a 180 degree offset. Therefore we analyse configuration pairs AB, 

AD, CB and CD. 

 

The initial analysis was based on finding a mean heading difference for each 

configuration. Difference data were binned in 20 degree bins, and the median found 

for each bin. The change in heading difference was calculated for each configuration 

pair. For each pair, the amplitude and phase of the sin(θ) and sin(2θ) modes were 

found as the two lowest modes of the FFT of the left hand side of equation (17.5). 

There was a pleasing consistency between the A and φ values calculated in this way. 

In order to estimate the uncertainty of the A and φ determination from any 
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comparison pair, the analysis was then performed on a station-by-station basis. Thus 

each station in set A was compared with each station in set B, to produce many 

estimates of the unknown A and φ. Stations with insufficient data to populate the 20-

degree bins were excluded from this analysis. Thus a standard deviation of A and φ 

estimates was made for each comparison pair, as summarised in Table 17.2. 
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B minus A 0 276  
(-84) 

72 1.85 0.23 -102 10 1.46 0.13 33 6 0.7 

D minus A 0 86 126 2.21 0.34 -102 5 1.49 0.14 35 5 0.5 

B minus C 0 94 64 2.41 0.30 -109 5 1.50 0.15 38 6 0.8 

D minus C 0 264  
(-96) 

112 2.20 0.17 -97 9 1.52 0.14 39 6 0.3 

Average of  
rows above 

   2.17 0.26 -103 7 1.49 0.14 36 6 0.6 

 

Table 17.2 Summary of amplitudes and phases of two lowest modes of instrument 

errors, form station-by station analysis. For each comparison pair, the number of 

pairs analysed would be the product of the number of stations in each configuration if 

all stations could be used. The amplitude and phase columns show the mean of Npairs 

comparisons. Standard deviations of the quantities are shown. 

 

The values of A1, A2, φ1, φ2 show reasonable consistency across the four 

configuration pairs, so we have good reason to believe that this correctly describes the 

variation of heading error with heading. The absolute offset of instrument error cannot 

be determined without measuring precisely the misalignment between the Octans and 

the WH300. We could think of no way of doing this on the frame. 

 

Having established a single best fit for the instrument error, we can now infer the 

frame error F(H). Again an estimate can be made for each station, and a consistent 
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picture emerged. The frame error F had a sin(2θ) character varying between +2 and -2 

degrees around the azimuth. 

 

The next steps in this investigation would be to establish the impact errors of the 

magnitudes described above on finally-processed LADCP profiles, and to explore a 

data path for merging Octans data onto the raw LADCP data. 

 

Pitch and Roll 

Limited investigation was undertaken of WH pitch and roll data. To facilitate this 

investigation post-cruise, we noted the relative attitudes of the Octans and WH 

instruments. One edge of an engineers’ square was placed firmly against the base of 

the octans, with the other edge leading over the WH. It was found that relative to this 

Octans line of zero pitch, beam 3 of the WH was below beam 4. The pitch difference 

was equivalent to 9mm across the 200mm base of the WH pressure case. The Octans 

had been aligned as nearly as possible by eye with its zero roll line downmost in its 

clamps. A straight edge was placed across the base of the WH and its height relative 

to the perforated struts that support the Octans clamps was noted. It was estimated 

that beam 2 was lower than beam 1, by 10mm across 400mm separation. 
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